On the uniqueness of two different classes of meromorphic functions under the sharing of two sets of rational functions

IF 0.3 Q4 MATHEMATICS
A. Banerjee, A. Kundu
{"title":"On the uniqueness of two different classes of meromorphic functions under the sharing of two sets of rational functions","authors":"A. Banerjee, A. Kundu","doi":"10.12697/acutm.2022.26.01","DOIUrl":null,"url":null,"abstract":"We study the uniqueness problem of two special classes of meromorphic functions sharing two sets of small functions. One of the considered classes has the property to include the Selberg class L functions, while the other class is comprising of arbitrary meromorphic functions having finitely many poles. We obtain a number of results which extend and improve a number of earlier results such as Li [ Proc. Amer. Math. Soc., 138 (2010), 2071-2077], Lin and Lin [Filomat 30 (2016), 3795-3806] and others. We have also been able to replace the strict CM (IM) sharing of the sets in our theorems to almost CM (almost IM) sharing. ","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"43 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the uniqueness problem of two special classes of meromorphic functions sharing two sets of small functions. One of the considered classes has the property to include the Selberg class L functions, while the other class is comprising of arbitrary meromorphic functions having finitely many poles. We obtain a number of results which extend and improve a number of earlier results such as Li [ Proc. Amer. Math. Soc., 138 (2010), 2071-2077], Lin and Lin [Filomat 30 (2016), 3795-3806] and others. We have also been able to replace the strict CM (IM) sharing of the sets in our theorems to almost CM (almost IM) sharing. 
两组有理函数共享下两类亚纯函数的唯一性
研究了两类共享两个小函数集的亚纯函数的唯一性问题。所考虑的一类具有包含Selberg类L函数的性质,而另一类则由具有有限多个极点的任意亚纯函数组成。我们得到了一些结果,这些结果扩展和改进了一些早期的结果,如Li [Proc. Amer]。数学。Soc。[j] .中国生物医学工程学报,138(2010),2071-2077],林和林[Filomat 30(2016), 3795-3806]等。我们还能够将定理中集合的严格CM (IM)共享替换为几乎CM(几乎IM)共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信