Naonori Ogasahara, Manabu Kobayashi, S. Hirasawa
{"title":"The construction of periodically time‐variant convolutional codes using binary linear block codes","authors":"Naonori Ogasahara, Manabu Kobayashi, S. Hirasawa","doi":"10.1002/ECJC.20271","DOIUrl":null,"url":null,"abstract":"In 1996 Rosenthal and York proposed (time-invariant) BCH convolutional codes [4] in which the parity check matrix of a BCH code is used in the construction of the convolutional code. The lower bound on the minimum free distance of a BCH convolutional code is guaranteed by the BCH limit. In this paper we propose a periodically time-variant convolutional code that can be constructed not only using the BCH parity check matrix but using the check matrix of any binary linear block code and show that the lower bound on the minimum free distance is guaranteed by the minimum free distance of the binary linear block code. In addition, taking 12 binary linear block codes as examples, we perform comparisons of the proposed codes with BCH convolutional codes using three evaluation criteria (minimum free distance, number of delay elements, coding rate) and show that there exist proposed codes that are superior to existing ones. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 31– 40, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20271","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"49 3 1","pages":"31-40"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ECJC.20271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
利用二进制线性分组码构造周期性时变卷积码
1996年Rosenthal和York提出了(时不变)BCH卷积码[4],其中使用了BCH码的奇偶校验矩阵来构造卷积码。BCH极限保证了BCH卷积码最小自由距离的下界。本文提出了一种周期时变卷积码,它不仅可以用BCH奇偶校验矩阵构造,而且可以用任意二进制线性分组码的校验矩阵构造,并证明了最小自由距离的下界是由二进制线性分组码的最小自由距离保证的。此外,以12个二进制线性分组码为例,采用最小自由距离、延迟元数、编码率三个评价标准,将所提出的码与BCH卷积码进行了比较,结果表明所提出的码优于现有的码。©2007 Wiley期刊公司电子工程学报,2009,31 (9):394 - 394;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjc.20271
本文章由计算机程序翻译,如有差异,请以英文原文为准。