Quantifying Systemic Risk Using Bayesian Networks

Sumit Sourabh, Markus Hofer, D. Kandhai
{"title":"Quantifying Systemic Risk Using Bayesian Networks","authors":"Sumit Sourabh, Markus Hofer, D. Kandhai","doi":"10.2139/ssrn.3525739","DOIUrl":null,"url":null,"abstract":"We develop a novel framework using Bayesian networks to capture distress dependence in the context of counterparty credit risk. This allows us to calibrate the probability of distress of an entity conditional on the distress of a different entity. We apply our methodology to wrong-way risk model proposed by Turlakov and stress scenario testing. Our results show that stress propagation in an interconnected financial system can have a significant impact on counterparty credit exposures.","PeriodicalId":11410,"journal":{"name":"Econometric Modeling: Capital Markets - Risk eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Risk eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3525739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop a novel framework using Bayesian networks to capture distress dependence in the context of counterparty credit risk. This allows us to calibrate the probability of distress of an entity conditional on the distress of a different entity. We apply our methodology to wrong-way risk model proposed by Turlakov and stress scenario testing. Our results show that stress propagation in an interconnected financial system can have a significant impact on counterparty credit exposures.
使用贝叶斯网络量化系统风险
我们开发了一个使用贝叶斯网络的新框架来捕捉交易对手信用风险背景下的困境依赖。这使我们能够以另一个实体的困境为条件来校准一个实体的困境概率。我们将我们的方法应用于Turlakov提出的错误风险模型和压力情景测试。我们的研究结果表明,在相互关联的金融体系中,压力传播会对交易对手的信用敞口产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信