Effect of Gender, Pose and Camera Distance on Human Body Dimensions Estimation

Yansel G'onzalez Tejeda, H. A. Mayer
{"title":"Effect of Gender, Pose and Camera Distance on Human Body Dimensions Estimation","authors":"Yansel G'onzalez Tejeda, H. A. Mayer","doi":"10.48550/arXiv.2205.12028","DOIUrl":null,"url":null,"abstract":"Human Body Dimensions Estimation (HBDE) is a task that an intelligent agent can perform to attempt to determine human body information from images (2D) or point clouds or meshes (3D). More specifically, if we define the HBDE problem as inferring human body measurements from images, then HBDE is a difficult, inverse, multi-task regression problem that can be tackled with machine learning techniques, particularly convolutional neural networks (CNN). Despite the community's tremendous effort to advance human shape analysis, there is a lack of systematic experiments to assess CNNs estimation of human body dimensions from images. Our contribution lies in assessing a CNN estimation performance in a series of controlled experiments. To that end, we augment our recently published neural anthropometer dataset by rendering images with different camera distance. We evaluate the network inference absolute and relative mean error between the estimated and actual HBDs. We train and evaluate the CNN in four scenarios: (1) training with subjects of a specific gender, (2) in a specific pose, (3) sparse camera distance and (4) dense camera distance. Not only our experiments demonstrate that the network can perform the task successfully, but also reveal a number of relevant facts that contribute to better understand the task of HBDE.","PeriodicalId":91934,"journal":{"name":"New trends in image analysis and processing -- ICIAP 2015 Workshops : ICIAP 2015 International Workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7-8, 2015, Proceedings","volume":"38 1","pages":"179-190"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New trends in image analysis and processing -- ICIAP 2015 Workshops : ICIAP 2015 International Workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7-8, 2015, Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.12028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human Body Dimensions Estimation (HBDE) is a task that an intelligent agent can perform to attempt to determine human body information from images (2D) or point clouds or meshes (3D). More specifically, if we define the HBDE problem as inferring human body measurements from images, then HBDE is a difficult, inverse, multi-task regression problem that can be tackled with machine learning techniques, particularly convolutional neural networks (CNN). Despite the community's tremendous effort to advance human shape analysis, there is a lack of systematic experiments to assess CNNs estimation of human body dimensions from images. Our contribution lies in assessing a CNN estimation performance in a series of controlled experiments. To that end, we augment our recently published neural anthropometer dataset by rendering images with different camera distance. We evaluate the network inference absolute and relative mean error between the estimated and actual HBDs. We train and evaluate the CNN in four scenarios: (1) training with subjects of a specific gender, (2) in a specific pose, (3) sparse camera distance and (4) dense camera distance. Not only our experiments demonstrate that the network can perform the task successfully, but also reveal a number of relevant facts that contribute to better understand the task of HBDE.
性别、姿势和相机距离对人体尺寸估计的影响
人体尺寸估计(HBDE)是一项智能代理可以执行的任务,试图从图像(2D)或点云或网格(3D)中确定人体信息。更具体地说,如果我们将HBDE问题定义为从图像中推断人体测量,那么HBDE是一个困难的、逆的、多任务的回归问题,可以用机器学习技术,特别是卷积神经网络(CNN)来解决。尽管社区在推进人体形状分析方面做出了巨大的努力,但缺乏系统的实验来评估cnn对图像中人体尺寸的估计。我们的贡献在于在一系列的控制实验中评估CNN的估计性能。为此,我们通过渲染不同相机距离的图像来增强我们最近发表的神经人体测量数据集。我们评估了估计和实际HBDs之间的网络推断绝对和相对平均误差。我们在四种场景下训练和评估CNN:(1)与特定性别的受试者进行训练,(2)以特定姿势进行训练,(3)稀疏相机距离和(4)密集相机距离。我们的实验不仅证明了网络可以成功地执行任务,而且还揭示了一些有助于更好地理解HBDE任务的相关事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信