{"title":"On stability in a case of oscillations of a pendulum with a mobile point mass","authors":"A.P. Markeev","doi":"10.1016/j.jappmathmech.2017.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Motion in a uniform gravitational field<span><span> of a modified pendulum in the form of a thin, uniform rod, one end of which is attached by a hinge, is investigated. A point mass (for example, a washer mounted on the rod) can move without friction along the rod. From time to time, the point mass collides with the other end of the rod (if, for example, at this end of the rod a rigid plate of negligibly small mass is attached perpendicular to it). The collisions are assumed to be perfectly elastic. There exists such a motion of the pendulum in which the rod is at rest (it hangs) along the vertical passing through its suspension point, but the point mass moves along the rod, periodically bouncing up from its lower end to some height not exceeding the rod length. The </span>nonlinear problem<span> of the orbital stability of this periodic motion of the pendulum is investigated. In the space of two dimensionless parameters of the problem, stability and instability regions are found.</span></span></p></div>","PeriodicalId":49686,"journal":{"name":"Pmm Journal of Applied Mathematics and Mechanics","volume":"81 4","pages":"Pages 262-269"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2017.12.003","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pmm Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021892817301053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
Abstract
Motion in a uniform gravitational field of a modified pendulum in the form of a thin, uniform rod, one end of which is attached by a hinge, is investigated. A point mass (for example, a washer mounted on the rod) can move without friction along the rod. From time to time, the point mass collides with the other end of the rod (if, for example, at this end of the rod a rigid plate of negligibly small mass is attached perpendicular to it). The collisions are assumed to be perfectly elastic. There exists such a motion of the pendulum in which the rod is at rest (it hangs) along the vertical passing through its suspension point, but the point mass moves along the rod, periodically bouncing up from its lower end to some height not exceeding the rod length. The nonlinear problem of the orbital stability of this periodic motion of the pendulum is investigated. In the space of two dimensionless parameters of the problem, stability and instability regions are found.
期刊介绍:
This journal is a cover to cover translation of the Russian journal Prikladnaya Matematika i Mekhanika, published by the Russian Academy of Sciences and reflecting all the major achievements of the Russian School of Mechanics.The journal is concerned with high-level mathematical investigations of modern physical and mechanical problems and reports current progress in this field. Special emphasis is placed on aeronautics and space science and such subjects as continuum mechanics, theory of elasticity, and mathematics of space flight guidance and control.