Improving the thermocline calculation over the global ocean

IF 4.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Emmanuel Romero, L. Tenorio-Fernandez, E. Portela, J. Montes-Aréchiga, L. Sánchez‐Velasco
{"title":"Improving the thermocline calculation over the global ocean","authors":"Emmanuel Romero, L. Tenorio-Fernandez, E. Portela, J. Montes-Aréchiga, L. Sánchez‐Velasco","doi":"10.5194/os-19-887-2023","DOIUrl":null,"url":null,"abstract":"Abstract. According to the typical thermal structure of the ocean, the water column can be divided into three layers: the mixed layer, the thermocline and the deep layer. In this study, we provide a new methodology, based on a function adjustment to the temperature profile, to locate the minimum and maximum depths of the strongest thermocline. We first validated our methodology by comparing the mixed layer depth obtained with the method proposed here with three other methods from previous studies. Since we found a very good agreement between the four methods we used the function adjustment to compute the monthly climatologies of the maximum thermocline depth and the thermocline thickness and strength in the global ocean. We also provide an assessment of the regions of the ocean where our adjustment is valid, i.e., where the thermal structure of the ocean follows the three-layer structure. However, there are ocean regions where the water column cannot be separated into three layers due to the dynamic processes that alter it. This assessment highlights the limitations of the existing methods to accurately determine the mixed layer depth and the thermocline depth in oceanic regions that are particularly turbulent such as the Southern Ocean and the northern North Atlantic, among others. The method proposed here has shown to be robust and easy to apply.\n","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"29 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/os-19-887-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. According to the typical thermal structure of the ocean, the water column can be divided into three layers: the mixed layer, the thermocline and the deep layer. In this study, we provide a new methodology, based on a function adjustment to the temperature profile, to locate the minimum and maximum depths of the strongest thermocline. We first validated our methodology by comparing the mixed layer depth obtained with the method proposed here with three other methods from previous studies. Since we found a very good agreement between the four methods we used the function adjustment to compute the monthly climatologies of the maximum thermocline depth and the thermocline thickness and strength in the global ocean. We also provide an assessment of the regions of the ocean where our adjustment is valid, i.e., where the thermal structure of the ocean follows the three-layer structure. However, there are ocean regions where the water column cannot be separated into three layers due to the dynamic processes that alter it. This assessment highlights the limitations of the existing methods to accurately determine the mixed layer depth and the thermocline depth in oceanic regions that are particularly turbulent such as the Southern Ocean and the northern North Atlantic, among others. The method proposed here has shown to be robust and easy to apply.
改进全球海洋的温跃层计算
摘要根据海洋典型的热结构,水柱可分为三层:混合层、温跃层和深层。在这项研究中,我们提出了一种基于温度剖面的函数调整的新方法来定位最强温跃层的最小和最大深度。我们首先通过将本文提出的方法获得的混合层深度与先前研究的其他三种方法进行比较来验证我们的方法。由于这四种方法之间有很好的一致性,我们使用函数调整来计算全球海洋最大温跃层深度和温跃层厚度和强度的月气候学。我们还提供了对我们的调整有效的海洋区域的评估,即海洋的热结构遵循三层结构。然而,由于动态过程的改变,有些海洋区域的水柱不能分成三层。这一评估突出了现有方法在准确确定诸如南大洋和北大西洋北部等特别动荡的海洋区域的混合层深度和温跃层深度方面的局限性。该方法鲁棒性好,易于应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Science
Ocean Science 地学-海洋学
CiteScore
5.90
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Ocean Science (OS) is a not-for-profit international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world. Electronic submission of articles is used to keep publication costs to a minimum. The costs will be covered by a moderate per-page charge paid by the authors. The peer-review process also makes use of the Internet. It includes an 8-week online discussion period with the original submitted manuscript and all comments. If accepted, the final revised paper will be published online. Ocean Science covers the following fields: ocean physics (i.e. ocean structure, circulation, tides, and internal waves); ocean chemistry; biological oceanography; air–sea interactions; ocean models – physical, chemical, biological, and biochemical; coastal and shelf edge processes; paleooceanography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信