Existence of positive solutions for a singular elliptic problem with critical exponent and measure data

A. Panda, D. Choudhuri, R. K. Giri
{"title":"Existence of positive solutions for a singular elliptic problem with critical exponent and measure data","authors":"A. Panda, D. Choudhuri, R. K. Giri","doi":"10.1216/rmj.2021.51.973","DOIUrl":null,"url":null,"abstract":"We prove the existence of a positive {\\it SOLA (Solutions Obtained as Limits of Approximations)} to the following PDE involving fractional power of Laplacian \\begin{equation} \\begin{split} (-\\Delta)^su&= \\frac{1}{u^\\gamma}+\\lambda u^{2_s^*-1}+\\mu ~\\text{in}~\\Omega, u&>0~\\text{in}~\\Omega, u&= 0~\\text{in}~\\mathbb{R}^N\\setminus\\Omega. \\end{split} \\end{equation} Here, $\\Omega$ is a bounded domain of $\\mathbb{R}^N$, $s\\in (0,1)$, $2s<N$, $\\lambda,\\gamma\\in (0,1)$, $2_s^*=\\frac{2N}{N-2s}$ is the fractional critical Sobolev exponent and $\\mu$ is a nonnegative bounded Radon measure in $\\Omega$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2021.51.973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We prove the existence of a positive {\it SOLA (Solutions Obtained as Limits of Approximations)} to the following PDE involving fractional power of Laplacian \begin{equation} \begin{split} (-\Delta)^su&= \frac{1}{u^\gamma}+\lambda u^{2_s^*-1}+\mu ~\text{in}~\Omega, u&>0~\text{in}~\Omega, u&= 0~\text{in}~\mathbb{R}^N\setminus\Omega. \end{split} \end{equation} Here, $\Omega$ is a bounded domain of $\mathbb{R}^N$, $s\in (0,1)$, $2s
一类具有临界指数和测量数据的奇异椭圆型问题正解的存在性
我们证明了以下涉及Laplacian {\it}\begin{equation} \begin{split} (-\Delta)^su&= \frac{1}{u^\gamma}+\lambda u^{2_s^*-1}+\mu ~\text{in}~\Omega, u&>0~\text{in}~\Omega, u&= 0~\text{in}~\mathbb{R}^N\setminus\Omega. \end{split} \end{equation}分数阶幂的PDE的正的存在性,其中$\Omega$是$\mathbb{R}^N$、$s\in (0,1)$、$2s
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信