{"title":"Existence of positive solutions for a singular elliptic problem with critical exponent and measure data","authors":"A. Panda, D. Choudhuri, R. K. Giri","doi":"10.1216/rmj.2021.51.973","DOIUrl":null,"url":null,"abstract":"We prove the existence of a positive {\\it SOLA (Solutions Obtained as Limits of Approximations)} to the following PDE involving fractional power of Laplacian \\begin{equation} \\begin{split} (-\\Delta)^su&= \\frac{1}{u^\\gamma}+\\lambda u^{2_s^*-1}+\\mu ~\\text{in}~\\Omega, u&>0~\\text{in}~\\Omega, u&= 0~\\text{in}~\\mathbb{R}^N\\setminus\\Omega. \\end{split} \\end{equation} Here, $\\Omega$ is a bounded domain of $\\mathbb{R}^N$, $s\\in (0,1)$, $2s<N$, $\\lambda,\\gamma\\in (0,1)$, $2_s^*=\\frac{2N}{N-2s}$ is the fractional critical Sobolev exponent and $\\mu$ is a nonnegative bounded Radon measure in $\\Omega$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2021.51.973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We prove the existence of a positive {\it SOLA (Solutions Obtained as Limits of Approximations)} to the following PDE involving fractional power of Laplacian \begin{equation} \begin{split} (-\Delta)^su&= \frac{1}{u^\gamma}+\lambda u^{2_s^*-1}+\mu ~\text{in}~\Omega, u&>0~\text{in}~\Omega, u&= 0~\text{in}~\mathbb{R}^N\setminus\Omega. \end{split} \end{equation} Here, $\Omega$ is a bounded domain of $\mathbb{R}^N$, $s\in (0,1)$, $2s