Csirmaz's Duality Conjecture and Threshold Secret Sharing

Andrej Bogdanov
{"title":"Csirmaz's Duality Conjecture and Threshold Secret Sharing","authors":"Andrej Bogdanov","doi":"10.4230/LIPIcs.ITC.2023.3","DOIUrl":null,"url":null,"abstract":"We conjecture that the smallest possible share size for binary secrets for the t-out-of-n and (n− t+1)out-of-n access structures is the same for all 1 ≤ t ≤ n. This is a strenghtening of a recent conjecture by Csirmaz (J. Math. Cryptol., 2020). We prove the conjecture for t = 2 and all n. Our proof gives a new (n − 1)-out-of-n secret sharing scheme for binary secrets with share alphabet size n. 2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete structures; Theory of computation → Cryptographic primitives; Mathematics of computing → Information theory; Security and privacy → Mathematical foundations of cryptography","PeriodicalId":6403,"journal":{"name":"2007 IEEE International Test Conference","volume":"72 1","pages":"3:1-3:6"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ITC.2023.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We conjecture that the smallest possible share size for binary secrets for the t-out-of-n and (n− t+1)out-of-n access structures is the same for all 1 ≤ t ≤ n. This is a strenghtening of a recent conjecture by Csirmaz (J. Math. Cryptol., 2020). We prove the conjecture for t = 2 and all n. Our proof gives a new (n − 1)-out-of-n secret sharing scheme for binary secrets with share alphabet size n. 2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete structures; Theory of computation → Cryptographic primitives; Mathematics of computing → Information theory; Security and privacy → Mathematical foundations of cryptography
csimaz对偶猜想与阈值秘密共享
我们推测,对于所有1≤t≤n的访问结构,t-out- n和(n−t+1)out- n的二进制秘密的最小可能共享大小是相同的。这是Csirmaz (J. Math)最近的一个猜想的加强。Cryptol。, 2020)。我们证明了t = 2和所有n的猜想。我们的证明给出了共享字母表大小为n的二进制秘密的一个新的(n−1)of-n的秘密共享方案。2012 ACM主题分类理论计算→随机,几何和离散结构;计算理论→密码学原语;计算数学→信息论;安全与隐私→密码学的数学基础
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信