p-parts of co-degrees of irreducible characters

IF 0.8 4区 数学 Q2 MATHEMATICS
Roya Bahramian, N. Ahanjideh
{"title":"p-parts of co-degrees of irreducible characters","authors":"Roya Bahramian, N. Ahanjideh","doi":"10.5802/CRMATH.158","DOIUrl":null,"url":null,"abstract":"For a character χ of a finite group G , the co-degree of χ is χc (1) = [G :kerχ] χ(1) . Let p be a prime and let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that pe+1 χc (1), for every irreducible character χ of G , then the p-length of G is not greater than e. Next, we study the finite groups satisfying the condition that p2 does not divide the co-degrees of their irreducible characters. Mathematical subject classification (2010). 20C15, 20D10, 20D05. Manuscript received 22nd April 2020, revised and accepted 24th November 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"161 1","pages":"79-83"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.158","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

For a character χ of a finite group G , the co-degree of χ is χc (1) = [G :kerχ] χ(1) . Let p be a prime and let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that pe+1 χc (1), for every irreducible character χ of G , then the p-length of G is not greater than e. Next, we study the finite groups satisfying the condition that p2 does not divide the co-degrees of their irreducible characters. Mathematical subject classification (2010). 20C15, 20D10, 20D05. Manuscript received 22nd April 2020, revised and accepted 24th November 2020.
不可约特征的协度的p部分
对于有限群G的一个特征χ, χ的共度为χc (1) = [G:kerχ] χ(1)。设p为质数,e为正整数。本文首先证明了如果G是p可解群,使得对于G的每一个不可约字符χ, p +1 χc(1),则G的p长度不大于e。然后研究了满足p2不除其不可约字符的协度的条件的有限群。数学学科分类(2010)。20c15, 20d10, 20d05。稿件于2020年4月22日收稿,于2020年11月24日修订并接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信