{"title":"Length preserving numerical schemes for Landau-Lifshitz equation based on Lagrange multiplier approaches","authors":"Q. Cheng, Jie Shen","doi":"10.48550/arXiv.2206.02882","DOIUrl":null,"url":null,"abstract":"We develop in this paper two classes of length preserving schemes for the Landau-Lifshitz equation based on two different Lagrange multiplier approaches. In the first approach, the Lagrange multiplier $\\lambda(\\bx,t)$ equals to $|\\nabla m(\\bx,t)|^2$ at the continuous level, while in the second approach, the Lagrange multiplier $\\lambda(\\bx,t)$ is introduced to enforce the length constraint at the discrete level and is identically zero at the continuous level. By using a predictor-corrector approach, we construct efficient and robust length preserving higher-order schemes for the Landau-Lifshitz equation, with the computational cost dominated by the predictor step which is simply a semi-implicit scheme. Furthermore, by introducing another space-independent Lagrange multiplier, we construct energy dissipative, in addition to length preserving, schemes for the Landau-Lifshitz equation, at the expense of solving one nonlinear algebraic equation. We present ample numerical experiments to validate the stability and accuracy for the proposed schemes, and also provide a performance comparison with some existing schemes.","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.02882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We develop in this paper two classes of length preserving schemes for the Landau-Lifshitz equation based on two different Lagrange multiplier approaches. In the first approach, the Lagrange multiplier $\lambda(\bx,t)$ equals to $|\nabla m(\bx,t)|^2$ at the continuous level, while in the second approach, the Lagrange multiplier $\lambda(\bx,t)$ is introduced to enforce the length constraint at the discrete level and is identically zero at the continuous level. By using a predictor-corrector approach, we construct efficient and robust length preserving higher-order schemes for the Landau-Lifshitz equation, with the computational cost dominated by the predictor step which is simply a semi-implicit scheme. Furthermore, by introducing another space-independent Lagrange multiplier, we construct energy dissipative, in addition to length preserving, schemes for the Landau-Lifshitz equation, at the expense of solving one nonlinear algebraic equation. We present ample numerical experiments to validate the stability and accuracy for the proposed schemes, and also provide a performance comparison with some existing schemes.