Length preserving numerical schemes for Landau-Lifshitz equation based on Lagrange multiplier approaches

Q. Cheng, Jie Shen
{"title":"Length preserving numerical schemes for Landau-Lifshitz equation based on Lagrange multiplier approaches","authors":"Q. Cheng, Jie Shen","doi":"10.48550/arXiv.2206.02882","DOIUrl":null,"url":null,"abstract":"We develop in this paper two classes of length preserving schemes for the Landau-Lifshitz equation based on two different Lagrange multiplier approaches. In the first approach, the Lagrange multiplier $\\lambda(\\bx,t)$ equals to $|\\nabla m(\\bx,t)|^2$ at the continuous level, while in the second approach, the Lagrange multiplier $\\lambda(\\bx,t)$ is introduced to enforce the length constraint at the discrete level and is identically zero at the continuous level. By using a predictor-corrector approach, we construct efficient and robust length preserving higher-order schemes for the Landau-Lifshitz equation, with the computational cost dominated by the predictor step which is simply a semi-implicit scheme. Furthermore, by introducing another space-independent Lagrange multiplier, we construct energy dissipative, in addition to length preserving, schemes for the Landau-Lifshitz equation, at the expense of solving one nonlinear algebraic equation. We present ample numerical experiments to validate the stability and accuracy for the proposed schemes, and also provide a performance comparison with some existing schemes.","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":"62 1","pages":"530-"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.02882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop in this paper two classes of length preserving schemes for the Landau-Lifshitz equation based on two different Lagrange multiplier approaches. In the first approach, the Lagrange multiplier $\lambda(\bx,t)$ equals to $|\nabla m(\bx,t)|^2$ at the continuous level, while in the second approach, the Lagrange multiplier $\lambda(\bx,t)$ is introduced to enforce the length constraint at the discrete level and is identically zero at the continuous level. By using a predictor-corrector approach, we construct efficient and robust length preserving higher-order schemes for the Landau-Lifshitz equation, with the computational cost dominated by the predictor step which is simply a semi-implicit scheme. Furthermore, by introducing another space-independent Lagrange multiplier, we construct energy dissipative, in addition to length preserving, schemes for the Landau-Lifshitz equation, at the expense of solving one nonlinear algebraic equation. We present ample numerical experiments to validate the stability and accuracy for the proposed schemes, and also provide a performance comparison with some existing schemes.
基于拉格朗日乘子方法的Landau-Lifshitz方程保长数值格式
本文基于两种不同的拉格朗日乘子方法,给出了Landau-Lifshitz方程的两类保长格式。在第一种方法中,拉格朗日乘子 $\lambda(\bx,t)$ 等于 $|\nabla m(\bx,t)|^2$ 在连续水平,而在第二种方法中,拉格朗日乘子 $\lambda(\bx,t)$ 的引入是为了在离散水平上强制长度约束,在连续水平上等于零。采用预测-校正方法,构造了Landau-Lifshitz方程的高效、鲁棒的保长高阶格式,其计算代价由预测步控制,预测步是一种简单的半隐式格式。此外,通过引入另一个与空间无关的拉格朗日乘子,我们以求解一个非线性代数方程为代价,为Landau-Lifshitz方程构造了能量耗散和长度保持格式。通过大量的数值实验验证了所提方案的稳定性和准确性,并与一些现有方案进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信