Supervised Deep Hashing for Efficient Audio Event Retrieval

Arindam Jati, Dimitra Emmanouilidou
{"title":"Supervised Deep Hashing for Efficient Audio Event Retrieval","authors":"Arindam Jati, Dimitra Emmanouilidou","doi":"10.1109/ICASSP40776.2020.9053766","DOIUrl":null,"url":null,"abstract":"Efficient retrieval of audio events can facilitate real-time implementation of numerous query and search-based systems. This work investigates the potency of different hashing techniques for efficient audio event retrieval. Multiple state-of-the-art weak audio embeddings are employed for this purpose. The performance of four classical unsupervised hashing algorithms is explored as part of off-the-shelf analysis. Then, we propose a partially supervised deep hashing framework that transforms the weak embeddings into a low-dimensional space while optimizing for efficient hash codes. The model uses only a fraction of the available labels and is shown here to significantly improve the retrieval accuracy on two widely employed audio event datasets. The extensive analysis and comparison between supervised and unsupervised hashing methods presented here, give insights on the quantizability of audio embeddings. This work provides a first look in efficient audio event retrieval systems and hopes to set baselines for future research.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1","pages":"4497-4501"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Efficient retrieval of audio events can facilitate real-time implementation of numerous query and search-based systems. This work investigates the potency of different hashing techniques for efficient audio event retrieval. Multiple state-of-the-art weak audio embeddings are employed for this purpose. The performance of four classical unsupervised hashing algorithms is explored as part of off-the-shelf analysis. Then, we propose a partially supervised deep hashing framework that transforms the weak embeddings into a low-dimensional space while optimizing for efficient hash codes. The model uses only a fraction of the available labels and is shown here to significantly improve the retrieval accuracy on two widely employed audio event datasets. The extensive analysis and comparison between supervised and unsupervised hashing methods presented here, give insights on the quantizability of audio embeddings. This work provides a first look in efficient audio event retrieval systems and hopes to set baselines for future research.
有效音频事件检索的监督深度哈希
音频事件的有效检索可以促进许多基于查询和搜索的系统的实时实现。这项工作调查了不同的哈希技术的效力,有效的音频事件检索。为此目的采用了多个最先进的弱音频嵌入。四种经典的无监督散列算法的性能作为现成分析的一部分进行了探讨。然后,我们提出了一个部分监督的深度哈希框架,该框架将弱嵌入转换为低维空间,同时优化有效的哈希码。该模型仅使用了可用标签的一小部分,并且在两个广泛使用的音频事件数据集上显着提高了检索精度。本文对有监督哈希和无监督哈希方法进行了广泛的分析和比较,对音频嵌入的可量化性提供了见解。这项工作为有效的音频事件检索系统提供了第一个视角,并希望为未来的研究奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信