Głębokie uczenie w procesie teledetekcyjnej interpretacji przestrzeni geograficznej – przegląd wybranych zagadnień

Maciej Adamiak
{"title":"Głębokie uczenie w procesie teledetekcyjnej interpretacji przestrzeni geograficznej – przegląd wybranych zagadnień","authors":"Maciej Adamiak","doi":"10.12657/czageo-92-03","DOIUrl":null,"url":null,"abstract":"The use of machine learning (ML) and deep learning (DL), especially deep convolutional neural networks (DCNN) in image processing and interpretation is currently a widely discussed topic among representatives of actively developing remote sensing and geoinformation scientific community. This article is an attempt to systematize the knowledge of DL in its supportive role in the aerial and satellite imagery interpretation of geographical space. The target audience of this overview are geographers who would like to enrich their research with methods based on artificial neural networks. The text presents main concepts and methods of DL along with example tasks that can be completed with their help i.e.: semantic segmentation, classification, augmentation of research dataset and feature engineering. The description of each task category was enriched with a use case and a literature review, thus making it possible to take the first step towards applying the specified technique in future research. The article conclusion includes a discussion on new directions and opportunities of applying DL in the discipline of Earth and environmental sciences.","PeriodicalId":84538,"journal":{"name":"Czasopismo geograficzne : kwartalnik Zrzeszenia Pol. Nauczycieli Geografji, Towarzystwa Geograficznego we Lwowie i Towarzystwa Geograficznego w Poznaniu","volume":"1642 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czasopismo geograficzne : kwartalnik Zrzeszenia Pol. Nauczycieli Geografji, Towarzystwa Geograficznego we Lwowie i Towarzystwa Geograficznego w Poznaniu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12657/czageo-92-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of machine learning (ML) and deep learning (DL), especially deep convolutional neural networks (DCNN) in image processing and interpretation is currently a widely discussed topic among representatives of actively developing remote sensing and geoinformation scientific community. This article is an attempt to systematize the knowledge of DL in its supportive role in the aerial and satellite imagery interpretation of geographical space. The target audience of this overview are geographers who would like to enrich their research with methods based on artificial neural networks. The text presents main concepts and methods of DL along with example tasks that can be completed with their help i.e.: semantic segmentation, classification, augmentation of research dataset and feature engineering. The description of each task category was enriched with a use case and a literature review, thus making it possible to take the first step towards applying the specified technique in future research. The article conclusion includes a discussion on new directions and opportunities of applying DL in the discipline of Earth and environmental sciences.
机器学习(ML)和深度学习(DL),特别是深度卷积神经网络(DCNN)在图像处理和解译中的应用,是目前积极发展的遥感和地理信息科学界代表广泛讨论的话题。本文试图系统化地介绍DL在航空和卫星图像地理空间解译中的支持作用。本概述的目标受众是地理学家,他们希望用基于人工神经网络的方法来丰富他们的研究。本文介绍了深度学习的主要概念和方法,以及可以在他们的帮助下完成的示例任务,即:语义分割,分类,研究数据集的增强和特征工程。每个任务类别的描述都丰富了用例和文献综述,从而使在未来的研究中应用指定技术的第一步成为可能。文章的结语部分讨论了深度学习在地球与环境科学领域应用的新方向和新机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信