Calculation of Thermal Pressure Coefficient of R11, R13, R14, R22, R23, R32, R41, and R113 Refrigerants by Data

V. Moeini, Mahin Farzad
{"title":"Calculation of Thermal Pressure Coefficient of R11, R13, R14, R22, R23, R32, R41, and R113 Refrigerants by Data","authors":"V. Moeini, Mahin Farzad","doi":"10.1155/2013/327419","DOIUrl":null,"url":null,"abstract":"For thermodynamic performance to be optimized particular attention must be paid to the fluid’s thermal pressure coefficients and thermodynamic properties. A new analytical expression based on the statistical mechanics is derived for R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants, using the intermolecular forces theory. In this paper, temperature dependency of the parameters of R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants to calculate thermal pressure coefficients in the form of first order has been developed to second and third orders and their temperature derivatives of new parameters are used to calculate thermal pressure coefficients. These problems have led us to try to establish a function for the accurate calculation of the thermal pressure coefficients of R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants based on statistical-mechanics theory for different refrigerants.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/327419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For thermodynamic performance to be optimized particular attention must be paid to the fluid’s thermal pressure coefficients and thermodynamic properties. A new analytical expression based on the statistical mechanics is derived for R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants, using the intermolecular forces theory. In this paper, temperature dependency of the parameters of R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants to calculate thermal pressure coefficients in the form of first order has been developed to second and third orders and their temperature derivatives of new parameters are used to calculate thermal pressure coefficients. These problems have led us to try to establish a function for the accurate calculation of the thermal pressure coefficients of R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants based on statistical-mechanics theory for different refrigerants.
R11、R13、R14、R22、R23、R32、R41、R113制冷剂热压系数的数据计算
为了优化热力学性能,必须特别注意流体的热压系数和热力学性质。基于分子间力理论,导出了R11、R13、R14、R22、R23、R32、R41和R113制冷剂的统计力学解析表达式。本文将R11、R13、R14、R22、R23、R32、R41、R113等制冷剂参数计算热压系数的温度依赖关系由一阶形式发展为二阶和三阶形式,并利用新参数的温度导数计算热压系数。这些问题促使我们尝试建立一个基于统计力学理论的函数,用于精确计算不同制冷剂的R11、R13、R14、R22、R23、R32、R41和R113的热压系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信