L. Han, Yuchen Zhao, Hengyi Lv, Yisa Zhang, Hailong Liu, Guoling Bi, Qing Han
{"title":"Enhancing Remote Sensing Image Super-Resolution with Efficient Hybrid Conditional Diffusion Model","authors":"L. Han, Yuchen Zhao, Hengyi Lv, Yisa Zhang, Hailong Liu, Guoling Bi, Qing Han","doi":"10.3390/rs15133452","DOIUrl":null,"url":null,"abstract":"Recently, optical remote-sensing images have been widely applied in fields such as environmental monitoring and land cover classification. However, due to limitations in imaging equipment and other factors, low-resolution images that are unfavorable for image analysis are often obtained. Although existing image super-resolution algorithms can enhance image resolution, these algorithms are not specifically designed for the characteristics of remote-sensing images and cannot effectively recover high-resolution images. Therefore, this paper proposes a novel remote-sensing image super-resolution algorithm based on an efficient hybrid conditional diffusion model (EHC-DMSR). The algorithm applies the theory of diffusion models to remote-sensing image super-resolution. Firstly, the comprehensive features of low-resolution images are extracted through a transformer network and CNN to serve as conditions for guiding image generation. Furthermore, to constrain the diffusion model and generate more high-frequency information, a Fourier high-frequency spatial constraint is proposed to emphasize high-frequency spatial loss and optimize the reverse diffusion direction. To address the time-consuming issue of the diffusion model during the reverse diffusion process, a feature-distillation-based method is proposed to reduce the computational load of U-Net, thereby shortening the inference time without affecting the super-resolution performance. Extensive experiments on multiple test datasets demonstrated that our proposed algorithm not only achieves excellent results in quantitative evaluation metrics but also generates sharper super-resolved images with rich detailed information.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Recently, optical remote-sensing images have been widely applied in fields such as environmental monitoring and land cover classification. However, due to limitations in imaging equipment and other factors, low-resolution images that are unfavorable for image analysis are often obtained. Although existing image super-resolution algorithms can enhance image resolution, these algorithms are not specifically designed for the characteristics of remote-sensing images and cannot effectively recover high-resolution images. Therefore, this paper proposes a novel remote-sensing image super-resolution algorithm based on an efficient hybrid conditional diffusion model (EHC-DMSR). The algorithm applies the theory of diffusion models to remote-sensing image super-resolution. Firstly, the comprehensive features of low-resolution images are extracted through a transformer network and CNN to serve as conditions for guiding image generation. Furthermore, to constrain the diffusion model and generate more high-frequency information, a Fourier high-frequency spatial constraint is proposed to emphasize high-frequency spatial loss and optimize the reverse diffusion direction. To address the time-consuming issue of the diffusion model during the reverse diffusion process, a feature-distillation-based method is proposed to reduce the computational load of U-Net, thereby shortening the inference time without affecting the super-resolution performance. Extensive experiments on multiple test datasets demonstrated that our proposed algorithm not only achieves excellent results in quantitative evaluation metrics but also generates sharper super-resolved images with rich detailed information.