Théorème de Chebotarev et complexité de Littlewood

IF 1.3 1区 数学 Q1 MATHEMATICS
J. Bellaïche
{"title":"Théorème de Chebotarev et complexité de Littlewood","authors":"J. Bellaïche","doi":"10.24033/ASENS.2291","DOIUrl":null,"url":null,"abstract":"Resume. The effective version of Chebotarev’s density theorem under the Generalized Riemann Hypothesis and the Artin conjecture (cf. Iwaniec and Kowalski’s Analytic Number Theory, §5.13) involves a numerical invariant of a subset D of a finite group G that we call the Littlewood Complexity of D. We study this invariant in detail. Using this study, and an application of the large sieve, we give improved versions of two standard problems related to Chebotarev : the bound on the first prime in a Frobenian set, and the asymptotics of the set of primes with given Frobenius in an infinite family of Galois extensions. We then give concrete applications to the problem of the factorization of an integral polynomial modulo primes, to the Lang-Trotter conjecture for abelian surfaces, and to the conjecture of Koblitz, with in all three cases better bounds that previously known.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"21 1","pages":"579-632"},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2291","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Resume. The effective version of Chebotarev’s density theorem under the Generalized Riemann Hypothesis and the Artin conjecture (cf. Iwaniec and Kowalski’s Analytic Number Theory, §5.13) involves a numerical invariant of a subset D of a finite group G that we call the Littlewood Complexity of D. We study this invariant in detail. Using this study, and an application of the large sieve, we give improved versions of two standard problems related to Chebotarev : the bound on the first prime in a Frobenian set, and the asymptotics of the set of primes with given Frobenius in an infinite family of Galois extensions. We then give concrete applications to the problem of the factorization of an integral polynomial modulo primes, to the Lang-Trotter conjecture for abelian surfaces, and to the conjecture of Koblitz, with in all three cases better bounds that previously known.
Chebotarev定理和Littlewood复杂性
重新开始在广义黎曼假设和Artin猜想下Chebotarev密度定理的有效版本(参见Iwaniec和Kowalski的解析数论,§5.13)涉及有限群G的子集D的数值不变量,我们称之为D的Littlewood复杂度。我们详细研究了这个不变量。利用这一研究成果,结合大筛子的一个应用,给出了两个与Chebotarev有关的标准问题的改进版本:Frobenian集合中第一素数的界,以及在无限伽罗瓦扩展族中给定Frobenius的素数集的渐近性。然后,我们给出了积分多项式模素数的分解问题、关于阿贝尔曲面的Lang-Trotter猜想和Koblitz猜想的具体应用,并在所有三种情况下给出了先前已知的更好的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics. Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition. The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信