Quantum Transport Phenomena in Magnetic Topological Insulators

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Chang Liu, Yayu Wang
{"title":"Quantum Transport Phenomena in Magnetic Topological Insulators","authors":"Chang Liu, Yayu Wang","doi":"10.7498/aps.72.20230690","DOIUrl":null,"url":null,"abstract":"Magnetic topological insulators have been a significant focus in the research of condensed matter physics over the past decade. The intricate interplay between the nontrivial band topology and spin, orbit, charge, and dimensionality degrees of freedom can give rise to a plethora of exotic topological quantum states and topological phase transitions. Measuring the transport properties of magnetic topological insulators is a crucial approach to exploring their exotic properties, which bears significant scientific importance in deepening our understanding of topological quantum states. Simultaneously, it also holds substantial potential for application in the development of novel low-power electronic devices. This article reviews the recent experimental advancements in transport studies of magnetic topological insulators in the past few years, encompassing the quantum anomalous Hall effect and topological quantum phase transitions in magnetically doped topological insulators, the quantum anomalous Hall phase, axion insulator phase and Chern insulator phase in intrinsic antiferromagnetic topological insulator MnBi2Te4, as well as the helical phase emerged from the Chern insulator in pulsed high magnetic fields. Finally, this article analyzes the future direction of development in magnetic topological insulators and the transport phenomena that remain to be understood in these systems, offering insights and perspectives on the potential breakthroughs to be achieved in this area of research.","PeriodicalId":6995,"journal":{"name":"物理学报","volume":"2 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20230690","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic topological insulators have been a significant focus in the research of condensed matter physics over the past decade. The intricate interplay between the nontrivial band topology and spin, orbit, charge, and dimensionality degrees of freedom can give rise to a plethora of exotic topological quantum states and topological phase transitions. Measuring the transport properties of magnetic topological insulators is a crucial approach to exploring their exotic properties, which bears significant scientific importance in deepening our understanding of topological quantum states. Simultaneously, it also holds substantial potential for application in the development of novel low-power electronic devices. This article reviews the recent experimental advancements in transport studies of magnetic topological insulators in the past few years, encompassing the quantum anomalous Hall effect and topological quantum phase transitions in magnetically doped topological insulators, the quantum anomalous Hall phase, axion insulator phase and Chern insulator phase in intrinsic antiferromagnetic topological insulator MnBi2Te4, as well as the helical phase emerged from the Chern insulator in pulsed high magnetic fields. Finally, this article analyzes the future direction of development in magnetic topological insulators and the transport phenomena that remain to be understood in these systems, offering insights and perspectives on the potential breakthroughs to be achieved in this area of research.
磁性拓扑绝缘体中的量子输运现象
磁性拓扑绝缘体是近十年来凝聚态物理研究的一个重要热点。非平凡带拓扑与自旋、轨道、电荷和维度自由度之间复杂的相互作用可以产生过多的奇异拓扑量子态和拓扑相变。测量磁性拓扑绝缘体的输运性质是探索其奇异性质的重要途径,对深化我们对拓扑量子态的认识具有重要的科学意义。同时,它在新型低功耗电子器件的开发中也具有巨大的应用潜力。本文综述了近年来磁性拓扑绝缘子输运研究的实验进展,包括磁掺杂拓扑绝缘子中的量子反常霍尔效应和拓扑量子相变,内禀反铁磁拓扑绝缘子MnBi2Te4中的量子反常霍尔相、轴子绝缘子相和陈氏绝缘子相;以及在脉冲强磁场中从陈氏绝缘体中产生的螺旋相。最后,本文分析了磁性拓扑绝缘体的未来发展方向和在这些系统中尚待理解的输运现象,并对该研究领域的潜在突破提供了见解和观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理学报
物理学报 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信