Application of therapeutic linear accelerators for the production of radioisotopes used in nuclear medicine

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
A. Konefał, A. Orlef, M. Sokół
{"title":"Application of therapeutic linear accelerators for the production of radioisotopes used in nuclear medicine","authors":"A. Konefał, A. Orlef, M. Sokół","doi":"10.2478/pjmpe-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract This review paper summarizes the possibilities of the use of therapeutic linear electron accelerators for the production of radioisotopes for nuclear medicine. This work is based on our published results and the thematically similar papers by other authors, directly related to five medical radioisotopes as 99Mo/99mTc, 198Au, 186Re, 188Re, 117mSn, produced using therapeutic linacs. Our unpublished data relating to the issues discussed have also been used here. In the experiments, two types of radiation were included in the analysis of the radioisotope production process, i.e. the therapeutic twenty-megavolt (20 MV) X-rays generated by Varian linacs and neutron radiation contaminating the therapeutic beam. Thus, the debated radioisotopes are produced in the photonuclear reactions and in the neutron ones. Linear therapeutic accelerators do not allow the production of radioisotopes with high specific activities, but the massive targets can be used instead. Thus, the amount of the produced radioisotopes may be increased. Apart from linear accelerators, more and more often, the production of radioisotopes is carried out in small medical cyclotrons. More such cyclotrons are developed, built, and sold commercially than for scientific research. The radioisotopes produced with the use of therapeutic linacs or cyclotrons can be successfully applied in various laboratory tests and in research.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"10 1","pages":"107 - 116"},"PeriodicalIF":0.7000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2022-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This review paper summarizes the possibilities of the use of therapeutic linear electron accelerators for the production of radioisotopes for nuclear medicine. This work is based on our published results and the thematically similar papers by other authors, directly related to five medical radioisotopes as 99Mo/99mTc, 198Au, 186Re, 188Re, 117mSn, produced using therapeutic linacs. Our unpublished data relating to the issues discussed have also been used here. In the experiments, two types of radiation were included in the analysis of the radioisotope production process, i.e. the therapeutic twenty-megavolt (20 MV) X-rays generated by Varian linacs and neutron radiation contaminating the therapeutic beam. Thus, the debated radioisotopes are produced in the photonuclear reactions and in the neutron ones. Linear therapeutic accelerators do not allow the production of radioisotopes with high specific activities, but the massive targets can be used instead. Thus, the amount of the produced radioisotopes may be increased. Apart from linear accelerators, more and more often, the production of radioisotopes is carried out in small medical cyclotrons. More such cyclotrons are developed, built, and sold commercially than for scientific research. The radioisotopes produced with the use of therapeutic linacs or cyclotrons can be successfully applied in various laboratory tests and in research.
治疗性直线加速器在核医学放射性同位素生产中的应用
摘要本文综述了利用治疗性直线电子加速器生产核医学用放射性同位素的可能性。这项工作是基于我们发表的结果和其他作者在主题上类似的论文,直接与五种医用放射性同位素99Mo/99mTc, 198Au, 186Re, 188Re, 117mSn有关,使用治疗直线装置产生。这里也使用了我们未发表的与所讨论问题有关的数据。在实验中,两种类型的辐射被纳入放射性同位素生产过程的分析,即由瓦里安直线发电机产生的20兆伏特(20 MV)治疗性x射线和污染治疗束的中子辐射。因此,有争议的放射性同位素是在光核反应和中子反应中产生的。线性治疗加速器不允许产生具有高比活性的放射性同位素,但可以使用大量目标。因此,产生的放射性同位素的数量可能会增加。除了线性加速器,越来越多的放射性同位素的生产是在小型医用回旋加速器中进行的。更多这样的回旋加速器是用于商业开发、制造和销售的,而不是用于科学研究。使用治疗直线加速器或回旋加速器产生的放射性同位素可以成功地应用于各种实验室试验和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polish Journal of Medical Physics and Engineering
Polish Journal of Medical Physics and Engineering RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.30
自引率
0.00%
发文量
19
期刊介绍: Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信