CARTOGRAPHIE D’URGENCE DES INONDATIONS EN AUSTRALIE À PARTIR D’IMAGES SATELLITAIRES SENTINEL-1 ET SENTINEL-2

Q3 Multidisciplinary
Rasmus P. Meyer, Mikkel G. Søgaard, Mathias P. Schødt, Stéphanie Horion, Alexander V. Prishchepov
{"title":"CARTOGRAPHIE D’URGENCE DES INONDATIONS EN AUSTRALIE À PARTIR D’IMAGES SATELLITAIRES SENTINEL-1 ET SENTINEL-2","authors":"Rasmus P. Meyer, Mikkel G. Søgaard, Mathias P. Schødt, Stéphanie Horion, Alexander V. Prishchepov","doi":"10.25518/0770-7576.6653","DOIUrl":null,"url":null,"abstract":"Timely inputs for spatial planning are essential to support decisions about preventive or damage controlling measures, including flood. Climate change predictions suggest more frequent floods in the future, implying a need for flood mapping. The objectives of the study were to evaluate the suitability of Sentinel-1 SAR data to map the extent of flood and to explore how land cover classification through different machine learning techniques and optical Sentinel-2 imagery can be applied as an emergency mapping tool. The Australian floods in March 2021 were used as a case study. Google Earth Engine was used to process and classify the flood extent and affected land cover types. Our study revealed the great suitability of Sentinel-1 SAR data for emergency mapping of flooded areas. Furthermore, land cover maps were produced using random forest (RD) and support vector machines (SVM) on optical Sentinel-2 Imagery. The presented workflow can be implemented in other parts of the world for the rapid assessment of flooded areas.","PeriodicalId":35838,"journal":{"name":"Bulletin de la Societe Royale des Sciences de Liege","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin de la Societe Royale des Sciences de Liege","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25518/0770-7576.6653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Timely inputs for spatial planning are essential to support decisions about preventive or damage controlling measures, including flood. Climate change predictions suggest more frequent floods in the future, implying a need for flood mapping. The objectives of the study were to evaluate the suitability of Sentinel-1 SAR data to map the extent of flood and to explore how land cover classification through different machine learning techniques and optical Sentinel-2 imagery can be applied as an emergency mapping tool. The Australian floods in March 2021 were used as a case study. Google Earth Engine was used to process and classify the flood extent and affected land cover types. Our study revealed the great suitability of Sentinel-1 SAR data for emergency mapping of flooded areas. Furthermore, land cover maps were produced using random forest (RD) and support vector machines (SVM) on optical Sentinel-2 Imagery. The presented workflow can be implemented in other parts of the world for the rapid assessment of flooded areas.
利用SENTINEL-1和SENTINEL-2卫星图像绘制澳大利亚洪水紧急地图
空间规划的及时投入对于支持有关预防或损害控制措施(包括洪水)的决策至关重要。气候变化预测表明,未来洪水将更加频繁,这意味着需要绘制洪水地图。该研究的目的是评估Sentinel-1 SAR数据在绘制洪水范围方面的适用性,并探讨如何通过不同的机器学习技术和光学Sentinel-2图像进行土地覆盖分类,作为一种应急制图工具。以2021年3月澳大利亚的洪水为例进行了研究。利用Google Earth Engine对洪水范围和受影响土地覆盖类型进行处理和分类。我们的研究表明,Sentinel-1 SAR数据非常适合用于洪水地区的应急制图。此外,利用随机森林(RD)和支持向量机(SVM)在Sentinel-2光学影像上生成土地覆盖图。所提出的工作流程可以在世界其他地区实施,用于快速评估洪水地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin de la Societe Royale des Sciences de Liege
Bulletin de la Societe Royale des Sciences de Liege Multidisciplinary-Multidisciplinary
CiteScore
0.90
自引率
0.00%
发文量
11
期刊介绍: The ‘Société Royale des Sciences de Liège" (hereafter the Society) regularly publishes in its ‘Bulletin" original scientific papers in the fields of astrophysics, biochemistry, biophysics, biology, chemistry, geology, mathematics, mineralogy or physics, following peer review approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信