Utility-driven anonymization in data publishing

Mingqiang Xue, Panagiotis Karras, Chedy Raïssi, H. Pung
{"title":"Utility-driven anonymization in data publishing","authors":"Mingqiang Xue, Panagiotis Karras, Chedy Raïssi, H. Pung","doi":"10.1145/2063576.2063945","DOIUrl":null,"url":null,"abstract":"Privacy-preserving data publication has been studied intensely in the past years. Still, all existing approaches transform data values by random perturbation or generalization. In this paper, we introduce a radically different data anonymization methodology. Our proposal aims to maintain a certain amount of patterns, defined in terms of a set of properties of interest that hold for the original data. Such properties are represented as linear relationships among data points. We present an algorithm that generates a set of anonymized data that strictly preserves these properties, thus maintaining specified patterns in the data. Extensive experiments with real and synthetic data show that our algorithm is efficient, and produces anonymized data that affords high utility in several data analysis tasks while safeguarding privacy.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"1 1","pages":"2277-2280"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Privacy-preserving data publication has been studied intensely in the past years. Still, all existing approaches transform data values by random perturbation or generalization. In this paper, we introduce a radically different data anonymization methodology. Our proposal aims to maintain a certain amount of patterns, defined in terms of a set of properties of interest that hold for the original data. Such properties are represented as linear relationships among data points. We present an algorithm that generates a set of anonymized data that strictly preserves these properties, thus maintaining specified patterns in the data. Extensive experiments with real and synthetic data show that our algorithm is efficient, and produces anonymized data that affords high utility in several data analysis tasks while safeguarding privacy.
数据发布中公用事业驱动的匿名化
隐私保护数据发布是近年来研究的热点问题。然而,所有现有的方法都是通过随机扰动或泛化来转换数据值。在本文中,我们介绍了一种完全不同的数据匿名化方法。我们的建议旨在维护一定数量的模式,这些模式是根据原始数据的一组相关属性定义的。这些属性表示为数据点之间的线性关系。我们提出了一种算法,该算法生成一组严格保留这些属性的匿名数据,从而在数据中维护指定的模式。对真实数据和合成数据的大量实验表明,我们的算法是有效的,并产生匿名数据,在保护隐私的同时,在一些数据分析任务中提供了很高的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信