On a class of Kirchhoff type problems with singular exponential nonlinearity

IF 0.7 Q2 MATHEMATICS
Mebarka Sattaf, Brahim Khaldi
{"title":"On a class of Kirchhoff type problems with singular exponential nonlinearity","authors":"Mebarka Sattaf, Brahim Khaldi","doi":"10.5556/j.tkjm.55.2024.5097","DOIUrl":null,"url":null,"abstract":"We study the following singular Kirchhoff type problem \n\\[\\left( P\\right) \\left\\{ \n\\begin{array} [c]{c} \n-m\\left({\\displaystyle\\int\\limits_{\\Omega}}\\left\\vert \\nabla u\\right\\vert ^{2}dx\\right) \\Delta u=h\\left( u\\right) \n\\frac{e^{\\alpha u^{2}}}{\\left\\vert x\\right\\vert ^{\\beta}}\\text{ \\ \\ \\ in} \\Omega,\\\\ \nu=0 \\text{on}\\; \\partial\\Omega \n\\end{array} \\right. \n\\] \nwhere $\\Omega\\subset\\mathbb{R}^{2}$ is a bounded domain with smooth boundary and $0\\in\\Omega,$ $\\beta\\in\\left[ 0,2\\right)$, $\\alpha>0$ and $m$ is a continuous function \non $\\mathbb{R}^{+}.$ Here, $h$ is a suitable preturbation of $e^{\\alpha u^{2}}$ as $u\\rightarrow\\infty.$ In this paper, we prove the existence of solutions of \n$(P)$. Our tools are Trudinger-Moser inequality with a singular weight and the mountain pass theorem","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"88 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.55.2024.5097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following singular Kirchhoff type problem \[\left( P\right) \left\{ \begin{array} [c]{c} -m\left({\displaystyle\int\limits_{\Omega}}\left\vert \nabla u\right\vert ^{2}dx\right) \Delta u=h\left( u\right) \frac{e^{\alpha u^{2}}}{\left\vert x\right\vert ^{\beta}}\text{ \ \ \ in} \Omega,\\ u=0 \text{on}\; \partial\Omega \end{array} \right. \] where $\Omega\subset\mathbb{R}^{2}$ is a bounded domain with smooth boundary and $0\in\Omega,$ $\beta\in\left[ 0,2\right)$, $\alpha>0$ and $m$ is a continuous function on $\mathbb{R}^{+}.$ Here, $h$ is a suitable preturbation of $e^{\alpha u^{2}}$ as $u\rightarrow\infty.$ In this paper, we prove the existence of solutions of $(P)$. Our tools are Trudinger-Moser inequality with a singular weight and the mountain pass theorem
一类奇异指数非线性Kirchhoff型问题
我们研究如下奇异Kirchhoff型问题 \[\left( P\right) \left\{ \begin{array} [c]{c} -m\left({\displaystyle\int\limits_{\Omega}}\left\vert \nabla u\right\vert ^{2}dx\right) \Delta u=h\left( u\right) \frac{e^{\alpha u^{2}}}{\left\vert x\right\vert ^{\beta}}\text{ \ \ \ in} \Omega,\\ u=0 \text{on}\; \partial\Omega \end{array} \right. \] 在哪里 $\Omega\subset\mathbb{R}^{2}$ 有界域是否具有光滑边界和 $0\in\Omega,$ $\beta\in\left[ 0,2\right)$, $\alpha>0$ 和 $m$ 是连续函数吗 $\mathbb{R}^{+}.$ 这里, $h$ 合适的预扰是 $e^{\alpha u^{2}}$ as $u\rightarrow\infty.$ 的解的存在性 $(P)$. 我们的工具是奇异权的Trudinger-Moser不等式和山口定理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信