Sensor-embedded teeth for oral activity recognition

Cheng-Yuan Li, Yen-Chang Chen, Wei-Ju Chen, Polly Huang, Hao-Hua Chu
{"title":"Sensor-embedded teeth for oral activity recognition","authors":"Cheng-Yuan Li, Yen-Chang Chen, Wei-Ju Chen, Polly Huang, Hao-Hua Chu","doi":"10.1145/2493988.2494352","DOIUrl":null,"url":null,"abstract":"This paper presents the design and implementation of a wearable oral sensory system that recognizes human oral activities, such as chewing, drinking, speaking, and coughing. We conducted an evaluation of this oral sensory system in a laboratory experiment involving 8 participants. The results show 93.8% oral activity recognition accuracy when using a person-dependent classifier and 59.8% accuracy when using a person-independent classifier.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"7 1","pages":"41-44"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

This paper presents the design and implementation of a wearable oral sensory system that recognizes human oral activities, such as chewing, drinking, speaking, and coughing. We conducted an evaluation of this oral sensory system in a laboratory experiment involving 8 participants. The results show 93.8% oral activity recognition accuracy when using a person-dependent classifier and 59.8% accuracy when using a person-independent classifier.
用于口腔活动识别的传感器嵌入牙齿
本文介绍了一种可穿戴口腔传感系统的设计和实现,该系统可以识别人类的口腔活动,如咀嚼、饮用、说话和咳嗽。我们在一个有8名参与者的实验室实验中对这个口腔感觉系统进行了评估。结果表明,使用人相关分类器时,口腔活动识别准确率为93.8%,使用人独立分类器时,准确率为59.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信