Probe-based microscale measurement setup for the thermal diffusivity of soft materials.

M. Ryu, M. Akoshima, J. Morikawa
{"title":"Probe-based microscale measurement setup for the thermal diffusivity of soft materials.","authors":"M. Ryu, M. Akoshima, J. Morikawa","doi":"10.1063/5.0084891","DOIUrl":null,"url":null,"abstract":"Based on the principle of the periodic heating method by using cantilever thermocouple nanoprobes, we developed a method and an apparatus to measure the thermal diffusivity of soft materials on a microscale. The contact position of the probe tip with the sample surface was defined by using the phenomenon that the DC component of the thermal electromotive force (EMF) of the probe changes significantly upon contact (i.e., the vertical temperature gradient near the sample surface changes significantly). This contact position was set as the surface reference position where the variation of the thermal contact conductance between the sample surface and the sensor probe is minimized. The phase shift from the micro-heater was measured by the AC component of the probe's thermal EMF and used to accurately determine the thermal diffusivity of micro-sized soft materials. The thermal diffusivity of the microstructured photoresist was determined with a deviation of ±3%.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"152 1","pages":"044901"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0084891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Based on the principle of the periodic heating method by using cantilever thermocouple nanoprobes, we developed a method and an apparatus to measure the thermal diffusivity of soft materials on a microscale. The contact position of the probe tip with the sample surface was defined by using the phenomenon that the DC component of the thermal electromotive force (EMF) of the probe changes significantly upon contact (i.e., the vertical temperature gradient near the sample surface changes significantly). This contact position was set as the surface reference position where the variation of the thermal contact conductance between the sample surface and the sensor probe is minimized. The phase shift from the micro-heater was measured by the AC component of the probe's thermal EMF and used to accurately determine the thermal diffusivity of micro-sized soft materials. The thermal diffusivity of the microstructured photoresist was determined with a deviation of ±3%.
基于探针的软质材料热扩散系数微尺度测量装置。
基于悬臂式热电偶纳米探针周期性加热的原理,研制了一种在微尺度上测量软质材料热扩散系数的方法和装置。利用探针的热电动势(EMF)的直流分量在接触时发生显著变化(即样品表面附近的垂直温度梯度发生显著变化)的现象来定义探针尖端与样品表面的接触位置。将该接触位置设置为样品表面与传感器探头之间的热接触电导变化最小的表面参考位置。微加热器的相移由探针的热电动势的交流分量测量,并用于精确确定微尺寸软材料的热扩散系数。微结构光刻胶的热扩散系数测定偏差为±3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信