Sparse Covariance Estimation from Quadratic Measurements: A Precise Analysis

Ehsan Abbasi, Fariborz Salehi, B. Hassibi
{"title":"Sparse Covariance Estimation from Quadratic Measurements: A Precise Analysis","authors":"Ehsan Abbasi, Fariborz Salehi, B. Hassibi","doi":"10.1109/ISIT.2019.8849405","DOIUrl":null,"url":null,"abstract":"We study the problem of estimating a high-dimensional sparse covariance matrix, Σ0, from a finite number of quadratic measurements, i.e., measurements ${\\text{a}}_i^T{\\Sigma _0}{{\\text{a}}_i}$ which are quadratic forms in the measurement vectors ai resulting from the covariance matrix, Σ0. Such a problem arises in applications where we can only make energy measurements of the underlying random variables. We study a simple LASSO-like convex recovery algorithm which involves a squared 2-norm (to match the covariance estimate to the measurements), plus a regularization term (that penalizes the ℓ1−norm of the non-diagonal entries of Σ0 to enforce sparsity). When the measurement vectors are i.i.d. Gaussian, we obtain the precise error performance of the algorithm (accurately determining the estimation error in any metric, e.g., 2-norm, operator norm, etc.) as a function of the number of measurements and the underlying distribution of Σ0. In particular, in the noiseless case we determine the necessary and sufficient number of measurements required to perfectly recover Σ0 as a function of its sparsity. Our results rely on a novel comparison lemma which relates a convex optimization problem with \"quadratic Gaussian\" measurements to one which has i.i.d. Gaussian measurements.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"15 1","pages":"2074-2078"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem of estimating a high-dimensional sparse covariance matrix, Σ0, from a finite number of quadratic measurements, i.e., measurements ${\text{a}}_i^T{\Sigma _0}{{\text{a}}_i}$ which are quadratic forms in the measurement vectors ai resulting from the covariance matrix, Σ0. Such a problem arises in applications where we can only make energy measurements of the underlying random variables. We study a simple LASSO-like convex recovery algorithm which involves a squared 2-norm (to match the covariance estimate to the measurements), plus a regularization term (that penalizes the ℓ1−norm of the non-diagonal entries of Σ0 to enforce sparsity). When the measurement vectors are i.i.d. Gaussian, we obtain the precise error performance of the algorithm (accurately determining the estimation error in any metric, e.g., 2-norm, operator norm, etc.) as a function of the number of measurements and the underlying distribution of Σ0. In particular, in the noiseless case we determine the necessary and sufficient number of measurements required to perfectly recover Σ0 as a function of its sparsity. Our results rely on a novel comparison lemma which relates a convex optimization problem with "quadratic Gaussian" measurements to one which has i.i.d. Gaussian measurements.
二次测量的稀疏协方差估计:一个精确的分析
我们研究了从有限数量的二次测量中估计高维稀疏协方差矩阵Σ0的问题,即测量值${\text{a}}_i^T{\Sigma _0}{{\text{a}}_i}$,这些测量值是由协方差矩阵Σ0产生的测量向量ai中的二次形式。这样的问题出现在我们只能对底层随机变量进行能量测量的应用中。我们研究了一个简单的类似lasso的凸恢复算法,该算法涉及平方2-范数(以匹配协方差估计与测量值),加上正则化项(惩罚Σ0的非对角线项的1 -范数以强制稀疏性)。当测量向量为i.i.d高斯时,我们获得了算法的精确误差性能(准确确定任何度量中的估计误差,例如2-范数,算子范数等)作为测量次数和Σ0底层分布的函数。特别是,在无噪声的情况下,我们确定了完全恢复Σ0作为其稀疏度的函数所需的必要和足够的测量次数。我们的结果依赖于一个新的比较引理,它将具有“二次高斯”测量的凸优化问题与具有一次高斯测量的凸优化问题联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信