{"title":"A GENERAL WAVELET-BASED PROFILE DECOMPOSITION IN THE CRITICAL EMBEDDING OF FUNCTION SPACES","authors":"H. Bahouri, A. Cohen, G. Koch","doi":"10.1142/S1793744211000370","DOIUrl":null,"url":null,"abstract":"We characterize the lack of compactness in the critical embedding of functions spaces X ⊂ Y having similar scaling properties in the following terms: a sequence (un)n≥0 bounded in X has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0 such that the remainder converges to zero in Y as the number of functions in the sum and n tend to +∞. Such a decomposition was established by Gerard in [13] for the embedding of the homogeneous Sobolev space X = Ḣs into the Y = Lp in d dimensions with 0 < s = d/2 - d/p, and then generalized by Jaffard in [15] to the case where X is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular, we identify two generic properties on the spaces X and Y that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of X and Y satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, Holder and BMO spaces.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"48 1","pages":"387-411"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793744211000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 38
Abstract
We characterize the lack of compactness in the critical embedding of functions spaces X ⊂ Y having similar scaling properties in the following terms: a sequence (un)n≥0 bounded in X has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0 such that the remainder converges to zero in Y as the number of functions in the sum and n tend to +∞. Such a decomposition was established by Gerard in [13] for the embedding of the homogeneous Sobolev space X = Ḣs into the Y = Lp in d dimensions with 0 < s = d/2 - d/p, and then generalized by Jaffard in [15] to the case where X is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular, we identify two generic properties on the spaces X and Y that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of X and Y satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, Holder and BMO spaces.
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.