REAL: A Representative Error-Driven Approach for Active Learning

Cheng Chen, Yong Wang, Lizi Liao, Yueguo Chen, Xiaoyong Du
{"title":"REAL: A Representative Error-Driven Approach for Active Learning","authors":"Cheng Chen, Yong Wang, Lizi Liao, Yueguo Chen, Xiaoyong Du","doi":"10.48550/arXiv.2307.00968","DOIUrl":null,"url":null,"abstract":"Given a limited labeling budget, active learning (AL) aims to sample the most informative instances from an unlabeled pool to acquire labels for subsequent model training. To achieve this, AL typically measures the informativeness of unlabeled instances based on uncertainty and diversity. However, it does not consider erroneous instances with their neighborhood error density, which have great potential to improve the model performance. To address this limitation, we propose $REAL$, a novel approach to select data instances with $\\underline{R}$epresentative $\\underline{E}$rrors for $\\underline{A}$ctive $\\underline{L}$earning. It identifies minority predictions as \\emph{pseudo errors} within a cluster and allocates an adaptive sampling budget for the cluster based on estimated error density. Extensive experiments on five text classification datasets demonstrate that $REAL$ consistently outperforms all best-performing baselines regarding accuracy and F1-macro scores across a wide range of hyperparameter settings. Our analysis also shows that $REAL$ selects the most representative pseudo errors that match the distribution of ground-truth errors along the decision boundary. Our code is publicly available at https://github.com/withchencheng/ECML_PKDD_23_Real.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.00968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a limited labeling budget, active learning (AL) aims to sample the most informative instances from an unlabeled pool to acquire labels for subsequent model training. To achieve this, AL typically measures the informativeness of unlabeled instances based on uncertainty and diversity. However, it does not consider erroneous instances with their neighborhood error density, which have great potential to improve the model performance. To address this limitation, we propose $REAL$, a novel approach to select data instances with $\underline{R}$epresentative $\underline{E}$rrors for $\underline{A}$ctive $\underline{L}$earning. It identifies minority predictions as \emph{pseudo errors} within a cluster and allocates an adaptive sampling budget for the cluster based on estimated error density. Extensive experiments on five text classification datasets demonstrate that $REAL$ consistently outperforms all best-performing baselines regarding accuracy and F1-macro scores across a wide range of hyperparameter settings. Our analysis also shows that $REAL$ selects the most representative pseudo errors that match the distribution of ground-truth errors along the decision boundary. Our code is publicly available at https://github.com/withchencheng/ECML_PKDD_23_Real.
REAL:主动学习的典型错误驱动方法
在有限的标注预算下,主动学习(AL)旨在从未标注的池中抽取信息量最大的实例,以获取后续模型训练的标签。为了实现这一点,人工智能通常基于不确定性和多样性来度量未标记实例的信息量。然而,它没有考虑错误实例及其邻域误差密度,这对提高模型性能有很大的潜力。为了解决这一限制,我们提出了$REAL$,这是一种新颖的方法,用于选择具有$\underline{R}$代表性$\underline{E}$错误的数据实例用于$\underline{A}$主动$\underline{L}$学习。它将少数派预测识别为集群中的\emph{伪错误},并根据估计的错误密度为集群分配自适应采样预算。在五个文本分类数据集上进行的大量实验表明,$REAL$在广泛的超参数设置中,在准确性和F1-macro分数方面始终优于所有表现最好的基线。我们的分析还表明,$REAL$选择了最具代表性的伪误差,这些伪误差与沿决策边界的真值误差分布相匹配。我们的代码可以在https://github.com/withchencheng/ECML_PKDD_23_Real上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信