{"title":"A study of statistical submersions","authors":"A. Siddiqui, K. Ahmad","doi":"10.5556/j.tkjm.55.2024.5044","DOIUrl":null,"url":null,"abstract":"In the sixties, A. Gray \\cite{Gr} and B. O'Neill \\cite{O1} come with the notion of Riemannian submersions as a tool to study the geometry of a Riemannian manifold with an additional structure in terms of the fibers and the base space. Riemannian submersions have long been an effective tool to construct Riemannian manifolds with positive or nonnegative sectional curvature in Riemannian geometry and compare certain manifolds within differential geometry. In particular, many examples of Einstein manifolds can be constructed by using such submersions. It is very well known that Riemannian submersions have applications in physics, for example Kaluza-Klein theory, Yang-Mills theory, supergravity and superstring theories.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.55.2024.5044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the sixties, A. Gray \cite{Gr} and B. O'Neill \cite{O1} come with the notion of Riemannian submersions as a tool to study the geometry of a Riemannian manifold with an additional structure in terms of the fibers and the base space. Riemannian submersions have long been an effective tool to construct Riemannian manifolds with positive or nonnegative sectional curvature in Riemannian geometry and compare certain manifolds within differential geometry. In particular, many examples of Einstein manifolds can be constructed by using such submersions. It is very well known that Riemannian submersions have applications in physics, for example Kaluza-Klein theory, Yang-Mills theory, supergravity and superstring theories.
期刊介绍:
To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.