P-GTM: privacy-preserving google tri-gram method for semantic text similarity

O. Davison, A. Mohammad, E. Milios
{"title":"P-GTM: privacy-preserving google tri-gram method for semantic text similarity","authors":"O. Davison, A. Mohammad, E. Milios","doi":"10.1145/2644866.2644882","DOIUrl":null,"url":null,"abstract":"This paper presents P-GTM, a privacy-preserving text similarity algorithm that extends the Google Tri-gram Method (GTM). The Google Tri-gram Method is a high-performance unsupervised semantic text similarity method based on the use of context from the Google Web 1T n-gram dataset. P-GTM computes the semantic similarity between two input bag-of-words documents on public cloud hardware, without disclosing the documents' contents. Like the GTM, P-GTM requires the uni-gram and tri-gram lists from the Google Web 1T n-gram dataset as additional inputs. The need for these additional lists makes private computation of GTM text similarities a challenging problem. P-GTM uses a combination of pre-computation, encryption, and randomized preprocessing to enable private computation of text similarities using the GTM. We discuss the security of the algorithm and quantify its privacy using standard and real life corpora.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"33 1","pages":"81-84"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2644866.2644882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents P-GTM, a privacy-preserving text similarity algorithm that extends the Google Tri-gram Method (GTM). The Google Tri-gram Method is a high-performance unsupervised semantic text similarity method based on the use of context from the Google Web 1T n-gram dataset. P-GTM computes the semantic similarity between two input bag-of-words documents on public cloud hardware, without disclosing the documents' contents. Like the GTM, P-GTM requires the uni-gram and tri-gram lists from the Google Web 1T n-gram dataset as additional inputs. The need for these additional lists makes private computation of GTM text similarities a challenging problem. P-GTM uses a combination of pre-computation, encryption, and randomized preprocessing to enable private computation of text similarities using the GTM. We discuss the security of the algorithm and quantify its privacy using standard and real life corpora.
P-GTM:语义文本相似度的隐私保护google三图方法
本文提出了一种保护隐私的文本相似度算法P-GTM,它扩展了谷歌三图方法(GTM)。谷歌三图方法是一种高性能的无监督语义文本相似度方法,该方法基于使用谷歌Web 1T n-图数据集的上下文。P-GTM在公有云硬件上计算两个输入词袋文档之间的语义相似度,而不披露文档的内容。与GTM一样,P-GTM需要b谷歌Web 1T n-gram数据集中的一元和三元列表作为额外输入。对这些附加列表的需求使得GTM文本相似度的私有计算成为一个具有挑战性的问题。P-GTM使用预计算、加密和随机预处理的组合来支持使用GTM进行文本相似度的私有计算。我们讨论了该算法的安全性,并使用标准和现实生活中的语料库量化了其隐私性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信