Dérivées de fonctionnelles intégrales dans des perturbations de fissures exprimées par intégrales de frontière

Marc Bonnet
{"title":"Dérivées de fonctionnelles intégrales dans des perturbations de fissures exprimées par intégrales de frontière","authors":"Marc Bonnet","doi":"10.1016/S1287-4620(00)88644-5","DOIUrl":null,"url":null,"abstract":"<div><p>This note presents, in the framework of three-dimensional linear elastodynamics in the time domain, a method for evaluating sensitivities of integral functionals to crack shapes, based on the adjoint state approach and resulting in a sensitivity formula expressed in terms of surface integrals (on the external boundary and the crack surface) and contour integrals (involving the direct and adjoint stress intensity factor distributions on the crack front). This method is well-suited to boundary element treatments of e.g. crack reconstruction inverse problems.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 12","pages":"Pages 1215-1221"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88644-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000886445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This note presents, in the framework of three-dimensional linear elastodynamics in the time domain, a method for evaluating sensitivities of integral functionals to crack shapes, based on the adjoint state approach and resulting in a sensitivity formula expressed in terms of surface integrals (on the external boundary and the crack surface) and contour integrals (involving the direct and adjoint stress intensity factor distributions on the crack front). This method is well-suited to boundary element treatments of e.g. crack reconstruction inverse problems.

由边界积分表示的裂纹扰动中的积分函数导出
本文在时域三维线性弹性动力学的框架下,提出了一种基于伴随状态法评估积分泛函对裂纹形状敏感性的方法,并得出了一个用表面积分(在外部边界和裂纹表面)和轮廓积分(涉及裂纹前沿的直接和伴随应力强度因子分布)表示的灵敏度公式。该方法适用于裂纹重构等反问题的边界元处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信