Xin He Miao, Kai Yao, Ching-Yu Yang, Jein-Shan Chen
{"title":"Levenberg-Marquardt method for absolute value equation associated with second-order cone","authors":"Xin He Miao, Kai Yao, Ching-Yu Yang, Jein-Shan Chen","doi":"10.3934/naco.2021050","DOIUrl":null,"url":null,"abstract":"In this paper, we suggest the Levenberg-Marquardt method with Armijo line search for solving absolute value equations associated with the second-order cone (SOCAVE for short), which is a generalization of the standard absolute value equation frequently discussed in the literature during the past decade. We analyze the convergence of the proposed algorithm. For numerical reports, we not only show the efficiency of the proposed method, but also present numerical comparison with smoothing Newton method. It indicates that the proposed algorithm could also be a good choice for solving the SOCAVE.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"18 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we suggest the Levenberg-Marquardt method with Armijo line search for solving absolute value equations associated with the second-order cone (SOCAVE for short), which is a generalization of the standard absolute value equation frequently discussed in the literature during the past decade. We analyze the convergence of the proposed algorithm. For numerical reports, we not only show the efficiency of the proposed method, but also present numerical comparison with smoothing Newton method. It indicates that the proposed algorithm could also be a good choice for solving the SOCAVE.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.