Some notes on the local topology of a deformation of a function-germ with a one-dimensional critical set

IF 0.4 Q4 MATHEMATICS
H. Santana
{"title":"Some notes on the local topology of a deformation of a function-germ with a one-dimensional critical set","authors":"H. Santana","doi":"10.5427/jsing.2022.25t","DOIUrl":null,"url":null,"abstract":"The Brasselet number of a function $f$ with nonisolated singularities describes numerically the topological information of its generalized Milnor fibre. In this work, we consider two function-germs $f,g:(X,0)\\rightarrow(\\mathbb{C},0)$ such that $f$ has isolated singularity at the origin and $g$ has a stratified one-dimensional critical set. We use the Brasselet number to study the local topology a deformation $\\tilde{g}$ of $g$ defined by $\\tilde{g}=g+f^N,$ where $N\\gg1$ and $N\\in\\mathbb{N}$. As an application of this study, we present a new proof of the Le-Iomdin formula for the Brasselet number.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.25t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Brasselet number of a function $f$ with nonisolated singularities describes numerically the topological information of its generalized Milnor fibre. In this work, we consider two function-germs $f,g:(X,0)\rightarrow(\mathbb{C},0)$ such that $f$ has isolated singularity at the origin and $g$ has a stratified one-dimensional critical set. We use the Brasselet number to study the local topology a deformation $\tilde{g}$ of $g$ defined by $\tilde{g}=g+f^N,$ where $N\gg1$ and $N\in\mathbb{N}$. As an application of this study, we present a new proof of the Le-Iomdin formula for the Brasselet number.
具有一维临界集的函数胚变形的局部拓扑的一些注意事项
具有非孤立奇异点的函数$f$的Brasselet数用数值描述了其广义Milnor纤维的拓扑信息。在这项工作中,我们考虑两个函数胚芽$f,g:(X,0)\rightarrow(\mathbb{C},0)$,其中$f$在原点具有孤立的奇点,$g$具有分层的一维临界集。我们使用Brasselet数来研究由$\tilde{g}=g+f^N,$定义的$g$的局部拓扑变形$\tilde{g}$,其中$N\gg1$和$N\in\mathbb{N}$。作为本研究的一个应用,我们给出了一个关于Brasselet数的Le-Iomdin公式的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信