Representation of classifier distributions in terms of hypergeometric functions

B. Venkoba Rao
{"title":"Representation of classifier distributions in terms of hypergeometric functions","authors":"B. Venkoba Rao","doi":"10.1016/j.cpart.2007.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>This paper derives alternative analytical expressions for classifier product distributions in terms of Gauss hypergeometric function, <sub>2</sub><em>F</em><sub>1</sub>, by considering feed distribution defined in terms of Gates–Gaudin–Schumann function and efficiency curve defined in terms of a logistic function. It is shown that classifier distributions under dispersed conditions of classification pivot at a common size and the distributions are difference similar. The paper also addresses an inverse problem of classifier distributions wherein the feed distribution and efficiency curve are identified from the measured product distributions without needing to know the solid flow split of particles to any of the product streams.</p></div>","PeriodicalId":100239,"journal":{"name":"China Particuology","volume":"5 4","pages":"Pages 274-283"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cpart.2007.05.003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Particuology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672251507000814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper derives alternative analytical expressions for classifier product distributions in terms of Gauss hypergeometric function, 2F1, by considering feed distribution defined in terms of Gates–Gaudin–Schumann function and efficiency curve defined in terms of a logistic function. It is shown that classifier distributions under dispersed conditions of classification pivot at a common size and the distributions are difference similar. The paper also addresses an inverse problem of classifier distributions wherein the feed distribution and efficiency curve are identified from the measured product distributions without needing to know the solid flow split of particles to any of the product streams.

用超几何函数表示分类器分布
本文通过考虑用Gates-Gaudin-Schumann函数定义的饲料分布和用logistic函数定义的效率曲线,推导出用高斯超几何函数2F1表示的分类器产品分布的替代解析表达式。结果表明,在分类支点分散的情况下,分类器的分布具有相同的大小和相似的差异。本文还解决了分类器分布的逆问题,其中饲料分布和效率曲线是从测量的产品分布中识别出来的,而不需要知道颗粒到任何产品流的固体流分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信