J. Mata, Zunerge Guevara, L. Quintero, Carlos Vasquez, Hernando Trujillo, Alberto Muñoz, J. Falla
{"title":"Combination of New Acoustic and Electromagnetic Frequency Technologies Detects Leaks Behind Multiple Casings. Case History","authors":"J. Mata, Zunerge Guevara, L. Quintero, Carlos Vasquez, Hernando Trujillo, Alberto Muñoz, J. Falla","doi":"10.2118/206383-ms","DOIUrl":null,"url":null,"abstract":"\n Although leakages in well tubulars have always existed, their occurrence has become very frequent as the number of active wells in mature fields increases. The catastrophic risk of these leaks is an increase in the number of environmental accidents in the oil and gas industry. One of the fundamental causes of leaks is corrosion, which plays a negative role in the productive life of the wells.\n Generally, these environmental events are associated with surface or near-surface sources. Since multiple casing strings exist within this depth range, the identification of the leak location becomes extremely difficult. In view of this, the industry has put much effort in improving and new technology to be more precise and comprehensive in diagnosing these leaks. The evolution of two of such technologies will be addressed in this paper. The first one is a new electromagnetic high-definition frequency tool for pipes and multiples casing for metal loss detection. This state-of-the-art technology is a noticeable improvement over existing tools, due to an important increase in the number of sources, number of detectors and wide range of working frequencies. The combination of these changes allows for the evaluation of metal loss in up to 5 concentric casings in a single run. Furthermore, the tool is small in diameter which makes it compatible with production pipes without the need of a workover rig. This versatility obviously helps in the preworkover diagnosis before deciding to move a rig to location to eventually remedy any leak problems.\n The electromagnetic technology is complemented, with the latest leak detection acoustic technology. A spontaneous audio source is normally associated with downhole fluid movements. The tool has an array of 8 hydrophones with a working frequency range from 100 Hz to 100 KHz. These two different technologies based on independent fundamental principles, allows for the detection of leaks in multiple concentric pipes with great vertical and radial precision to identify the exact location of leaks as small as to 0.02 L/min. the depth of investigation of the system is up to 10 feet. Therefore, it is possible to detect fluid movement within the formation.\n Pulsed neutron technology was included in the study to detect water movement behind the casing to establish the flow path to the surface in addition to the leak point.\n A very complex acquisition program was established that was undoubtedly a key success factor in the results obtained. The electromagnetic tool determined the depth of severe casing metal loss in 7-inch casing, also the acoustic tool detected the noise of fluid movement in the 7-inch annulus, and the pulsed-neutron tool showed the beginning of water movement at the same interval the temperature log, also included in the same tool string showed a considerable change that correlated with all these logs, indicating the point of communication in this well.\n After establishing the uniqueness of the solution, this diagnosis helped the operator define an intervention plan for this well, and to make the appropriate corrections in the field development strategy.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206383-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although leakages in well tubulars have always existed, their occurrence has become very frequent as the number of active wells in mature fields increases. The catastrophic risk of these leaks is an increase in the number of environmental accidents in the oil and gas industry. One of the fundamental causes of leaks is corrosion, which plays a negative role in the productive life of the wells.
Generally, these environmental events are associated with surface or near-surface sources. Since multiple casing strings exist within this depth range, the identification of the leak location becomes extremely difficult. In view of this, the industry has put much effort in improving and new technology to be more precise and comprehensive in diagnosing these leaks. The evolution of two of such technologies will be addressed in this paper. The first one is a new electromagnetic high-definition frequency tool for pipes and multiples casing for metal loss detection. This state-of-the-art technology is a noticeable improvement over existing tools, due to an important increase in the number of sources, number of detectors and wide range of working frequencies. The combination of these changes allows for the evaluation of metal loss in up to 5 concentric casings in a single run. Furthermore, the tool is small in diameter which makes it compatible with production pipes without the need of a workover rig. This versatility obviously helps in the preworkover diagnosis before deciding to move a rig to location to eventually remedy any leak problems.
The electromagnetic technology is complemented, with the latest leak detection acoustic technology. A spontaneous audio source is normally associated with downhole fluid movements. The tool has an array of 8 hydrophones with a working frequency range from 100 Hz to 100 KHz. These two different technologies based on independent fundamental principles, allows for the detection of leaks in multiple concentric pipes with great vertical and radial precision to identify the exact location of leaks as small as to 0.02 L/min. the depth of investigation of the system is up to 10 feet. Therefore, it is possible to detect fluid movement within the formation.
Pulsed neutron technology was included in the study to detect water movement behind the casing to establish the flow path to the surface in addition to the leak point.
A very complex acquisition program was established that was undoubtedly a key success factor in the results obtained. The electromagnetic tool determined the depth of severe casing metal loss in 7-inch casing, also the acoustic tool detected the noise of fluid movement in the 7-inch annulus, and the pulsed-neutron tool showed the beginning of water movement at the same interval the temperature log, also included in the same tool string showed a considerable change that correlated with all these logs, indicating the point of communication in this well.
After establishing the uniqueness of the solution, this diagnosis helped the operator define an intervention plan for this well, and to make the appropriate corrections in the field development strategy.