Impact Force Minimization Algorithm for Collaborative Robots Using Impact Force Prediction Model

Tae-Jung Kim, Ji-hoon Kim, Kuk‐Hyun Ahn, Jae-Bok Song
{"title":"Impact Force Minimization Algorithm for Collaborative Robots Using Impact Force Prediction Model","authors":"Tae-Jung Kim, Ji-hoon Kim, Kuk‐Hyun Ahn, Jae-Bok Song","doi":"10.23919/ICCAS50221.2020.9268300","DOIUrl":null,"url":null,"abstract":"Recently, the demand for collaborative robots is increasing in the industrial field. However, as the collaborative robots share the same workspace with human workers, there is a high possibility of collision between the robot and the worker. A possible method to ensure the safety of a human worker is to restrict the impact force that the robot exerts on the worker during a collision. That is, if the impact force can be predicted, the robot motion that causes excessive impact force can be detected and handled properly before the actual robot motion. To this end, an algorithm for predicting the impact force generated by a collision is proposed, and a method for ensuring the human safety, by modifying the trajectory of the robot when the excessive impact is predicted with current motion, is investigated. To establish the impact force prediction model, collision experiments were performed with a 6-DOF collaborative robot and a dummy. Moreover, an algorithm for minimizing the impact force, by reducing the end-effector velocity of the robot when excessive impact is predicted from the established model, is proposed to ensure the human safety. The performance of the algorithm was verified through various experiments.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"100 1","pages":"869-872"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the demand for collaborative robots is increasing in the industrial field. However, as the collaborative robots share the same workspace with human workers, there is a high possibility of collision between the robot and the worker. A possible method to ensure the safety of a human worker is to restrict the impact force that the robot exerts on the worker during a collision. That is, if the impact force can be predicted, the robot motion that causes excessive impact force can be detected and handled properly before the actual robot motion. To this end, an algorithm for predicting the impact force generated by a collision is proposed, and a method for ensuring the human safety, by modifying the trajectory of the robot when the excessive impact is predicted with current motion, is investigated. To establish the impact force prediction model, collision experiments were performed with a 6-DOF collaborative robot and a dummy. Moreover, an algorithm for minimizing the impact force, by reducing the end-effector velocity of the robot when excessive impact is predicted from the established model, is proposed to ensure the human safety. The performance of the algorithm was verified through various experiments.
基于冲击力预测模型的协作机器人冲击力最小化算法
近年来,工业领域对协作机器人的需求不断增加。然而,由于协作机器人与人类工人共享同一个工作空间,因此机器人与工人之间发生碰撞的可能性很高。确保人类工人安全的一种可能的方法是在碰撞时限制机器人对工人施加的冲击力。也就是说,如果能够预测冲击力,就可以在机器人实际运动之前,检测到造成冲击力过大的机器人运动,并进行适当的处理。为此,提出了一种预测碰撞产生的冲击力的算法,并研究了在当前运动预测到过度冲击时,通过修改机器人轨迹来保证人体安全的方法。为建立冲击力预测模型,采用六自由度协作机器人和假人进行了碰撞实验。在此基础上,提出了一种通过减小机器人末端执行器速度来实现冲击力最小化的算法,以保证人体安全。通过各种实验验证了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信