On finitely stable domains, II

IF 0.3 4区 数学 Q4 MATHEMATICS
Stefania Gabelli, M. Roitman
{"title":"On finitely stable domains, II","authors":"Stefania Gabelli, M. Roitman","doi":"10.1216/jca.2020.12.179","DOIUrl":null,"url":null,"abstract":"Among other results, we prove the following: (1) A locally Archimedean stable domain satisfies accp. (2) A stable domain R is Archimedean if and only if every nonunit of R belongs to a height-one prime ideal of R′ (this result is related to Ohm’s Theorem for Prüfer domains). (3) An Archimedean stable domain R is one-dimensional if and only if R′ is equidimensional (generally, an Archimedean stable local domain is not necessarily onedimensional). (4) An Archimedean finitely stable semilocal domain with stable maximal ideals is locally Archimedean, but generally, neither Archimedean stable domains, nor Archimedean semilocal domains are necessarily locally Archimedean.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"33 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2020.12.179","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Among other results, we prove the following: (1) A locally Archimedean stable domain satisfies accp. (2) A stable domain R is Archimedean if and only if every nonunit of R belongs to a height-one prime ideal of R′ (this result is related to Ohm’s Theorem for Prüfer domains). (3) An Archimedean stable domain R is one-dimensional if and only if R′ is equidimensional (generally, an Archimedean stable local domain is not necessarily onedimensional). (4) An Archimedean finitely stable semilocal domain with stable maximal ideals is locally Archimedean, but generally, neither Archimedean stable domains, nor Archimedean semilocal domains are necessarily locally Archimedean.
在有限稳定定义域上
结果表明:(1)一个局部阿基米德稳定域满足accp。(2)一个稳定定义域R是阿基米德的当且仅当R的每个非单位都属于R '的一个高度为1的素数理想(这个结果与普洱定义域的欧姆定理有关)。(3)阿基米德稳定域R是一维的当且仅当R '是等维的(一般来说,阿基米德稳定局部域不一定是一维的)。(4)具有稳定极大理想的阿基米德有限稳定半局部域是局部阿基米德域,但一般来说,阿基米德稳定域和阿基米德半局部域都不一定是局部阿基米德域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信