Z. Xiaoyan, Z. Baohua, Lv Xiaoqi, Gu Yu, Wang Yueming, Liu Xin, Ren Yan, Li Jianjun
{"title":"The joint discriminative and generative learning for person re-identification of deep dual attention","authors":"Z. Xiaoyan, Z. Baohua, Lv Xiaoqi, Gu Yu, Wang Yueming, Liu Xin, Ren Yan, Li Jianjun","doi":"10.12086/OEE.2021.200388","DOIUrl":null,"url":null,"abstract":"In the task of person re-identification, there are problems such as difficulty in labeling datasets, small sample size, and detail feature missing after feature extraction. The joint discriminative and generative learning for person re-identification of the deep dual attention is proposed against the above issues. Firstly, the author constructs a joint learning framework and embeds the discriminative module into the generative module to realize the end-to-end training of image generative and discriminative. Then, the generated pictures are sent to the discriminative module to optimize the generative module and the discriminative module simultaneously. Secondly, according to the connection between the channels of the attention modules and the connection between the attention modules in spaces, it merges all the channel features and spatial features and constructs a deep dual attention module. By embedding the models in the teacher model, the model can better extract the fine-grained features of the objects and improve the recognition ability. The experimental results show that the algorithm has better robustness and discriminative capability on the Market-1501 and the DukeMTMC-ReID datasets.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"181 1","pages":"200388"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
In the task of person re-identification, there are problems such as difficulty in labeling datasets, small sample size, and detail feature missing after feature extraction. The joint discriminative and generative learning for person re-identification of the deep dual attention is proposed against the above issues. Firstly, the author constructs a joint learning framework and embeds the discriminative module into the generative module to realize the end-to-end training of image generative and discriminative. Then, the generated pictures are sent to the discriminative module to optimize the generative module and the discriminative module simultaneously. Secondly, according to the connection between the channels of the attention modules and the connection between the attention modules in spaces, it merges all the channel features and spatial features and constructs a deep dual attention module. By embedding the models in the teacher model, the model can better extract the fine-grained features of the objects and improve the recognition ability. The experimental results show that the algorithm has better robustness and discriminative capability on the Market-1501 and the DukeMTMC-ReID datasets.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing