Two-Stage Instrumental Variable Estimation of Linear Panel Data Models with Interactive Effects

Guowei Cui, Milda Norkute, Vasilis Sarafidis, Takashi Yamagata
{"title":"Two-Stage Instrumental Variable Estimation of Linear Panel Data Models with Interactive Effects","authors":"Guowei Cui, Milda Norkute, Vasilis Sarafidis, Takashi Yamagata","doi":"10.2139/ssrn.3692123","DOIUrl":null,"url":null,"abstract":"This paper puts forward a new instrumental variables (IV) approach for linear panel data models with interactive effects in the error term and regressors. The instruments are transformed regressors and so it is not necessary to search for external instruments. The proposed method asymptotically eliminates the interactive effects in the error term and in the regressors separately in two stages. We propose a two-stage IV (2SIV) and a mean-group IV (MGIV) estimator for homogeneous and heterogeneous slope models, respectively. The asymptotic analysis for the models with homogeneous slopes reveals that: (i) the \\sqrt{NT}-consistent 2SIV estimator is free from asymptotic bias that could arise due to the correlation between the regressors and the estimation error of the interactive effects; (ii) under the same set of assumptions, existing popular estimators, which eliminate interactive effects either jointly in the regressors and the error term, or only in the error term, can suffer from asymptotic bias; (iii) the proposed 2SIV estimator is asymptotically as efficient as the bias-corrected version of estimators that eliminate interactive effects jointly in the regressors and the error, whilst; (iv) the relative efficiency of the estimators that eliminate interactive effects only in the error term is indeterminate. A Monte Carlo study confirms good approximation quality of our asymptotic results and competent performance of 2SIV and MGIV in comparison with existing estimators. Furthermore, it demonstrates that the bias-corrections can be imprecise and noticeably inflate the dispersion of the estimators in finite samples.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3692123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper puts forward a new instrumental variables (IV) approach for linear panel data models with interactive effects in the error term and regressors. The instruments are transformed regressors and so it is not necessary to search for external instruments. The proposed method asymptotically eliminates the interactive effects in the error term and in the regressors separately in two stages. We propose a two-stage IV (2SIV) and a mean-group IV (MGIV) estimator for homogeneous and heterogeneous slope models, respectively. The asymptotic analysis for the models with homogeneous slopes reveals that: (i) the \sqrt{NT}-consistent 2SIV estimator is free from asymptotic bias that could arise due to the correlation between the regressors and the estimation error of the interactive effects; (ii) under the same set of assumptions, existing popular estimators, which eliminate interactive effects either jointly in the regressors and the error term, or only in the error term, can suffer from asymptotic bias; (iii) the proposed 2SIV estimator is asymptotically as efficient as the bias-corrected version of estimators that eliminate interactive effects jointly in the regressors and the error, whilst; (iv) the relative efficiency of the estimators that eliminate interactive effects only in the error term is indeterminate. A Monte Carlo study confirms good approximation quality of our asymptotic results and competent performance of 2SIV and MGIV in comparison with existing estimators. Furthermore, it demonstrates that the bias-corrections can be imprecise and noticeably inflate the dispersion of the estimators in finite samples.
具有交互效应的线性面板数据模型的两阶段工具变量估计
本文提出了一种新的工具变量(IV)方法,用于误差项和回归量具有交互作用的线性面板数据模型。仪器是转换回归量,因此不需要寻找外部仪器。该方法分两个阶段逐步消除误差项和回归量的相互影响。我们分别针对均匀和非均匀坡度模型提出了两阶段IV (2SIV)和平均组IV (MGIV)估计器。对具有齐次斜率的模型的渐近分析表明:(1)\sqrt{NT}一致的2SIV估计量不存在由于回归量和交互效应估计误差之间的相关性而产生的渐近偏差;(ii)在相同的假设集下,现有的流行估计量,要么在回归量和误差项中共同消除相互作用,要么只在误差项中消除相互作用,可能会出现渐近偏差;(iii)所提出的2SIV估计量与消除回归量和误差中的相互影响的偏置校正估计量一样有效,同时;(iv)仅在误差项中消除相互影响的估计器的相对效率是不确定的。蒙特卡洛研究证实了我们的渐近结果具有良好的近似质量,并且与现有估计器相比,2SIV和MGIV的性能令人满意。此外,它证明了偏差修正可能是不精确的,并且在有限样本中显著地膨胀了估计器的分散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信