{"title":"A Valuation Theorem for Noetherian Rings","authors":"Antoni Rangachev","doi":"10.1307/mmj/20206022","DOIUrl":null,"url":null,"abstract":"Let A and B be integral domains. Suppose A is Noetherian and B is a finitely generated A-algebra that contains A. Denote by A' the integral closure of A in B. We show that A' is determined by finitely many unique discrete valuation rings. Our result generalizes Rees' classical valuation theorem for ideals. We also obtain a variant of Zariski's main theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20206022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let A and B be integral domains. Suppose A is Noetherian and B is a finitely generated A-algebra that contains A. Denote by A' the integral closure of A in B. We show that A' is determined by finitely many unique discrete valuation rings. Our result generalizes Rees' classical valuation theorem for ideals. We also obtain a variant of Zariski's main theorem.