{"title":"Residence time distribution of a model hydrodynamic vortex separator","authors":"R.M Alkhaddar , P.R Higgins , D.A Phipps , R.Y.G Andoh","doi":"10.1016/S1462-0758(01)00015-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the macromixing within a hydrodynamic vortex separator (HDVS). The device is a scale model of a prototype unit and is operated with zero baseflow. The device under investigation is typically used for the removal of settleable and colloidal solids. The macromixing is investigated by conducting tracer experiments from which the residence time distribution (RTD) is obtained and interpreted to characterise the mixing regime within the HDVS. The method of moments and non-linear regression are used to obtain various RTD functions and flow-model parameters to aid in the characterisation of the device's mixing regime and the degree of any non-ideal flow behaviour. The axial dispersion model (ADM) and tanks-in-series model (TISM) are used in this study. The RTD imperfectly approximates a plug-flow distribution but, the device has some amount of dispersion and is equal to approximately 2–3 perfectly stirred tanks in series. The ADM seems to give a closer representation of the experimental curves compared to the TISM. The sludge hopper appears to be acting as a stagnant zone.</p></div>","PeriodicalId":101268,"journal":{"name":"Urban Water","volume":"3 1","pages":"Pages 17-24"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1462-0758(01)00015-2","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1462075801000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
This study investigates the macromixing within a hydrodynamic vortex separator (HDVS). The device is a scale model of a prototype unit and is operated with zero baseflow. The device under investigation is typically used for the removal of settleable and colloidal solids. The macromixing is investigated by conducting tracer experiments from which the residence time distribution (RTD) is obtained and interpreted to characterise the mixing regime within the HDVS. The method of moments and non-linear regression are used to obtain various RTD functions and flow-model parameters to aid in the characterisation of the device's mixing regime and the degree of any non-ideal flow behaviour. The axial dispersion model (ADM) and tanks-in-series model (TISM) are used in this study. The RTD imperfectly approximates a plug-flow distribution but, the device has some amount of dispersion and is equal to approximately 2–3 perfectly stirred tanks in series. The ADM seems to give a closer representation of the experimental curves compared to the TISM. The sludge hopper appears to be acting as a stagnant zone.