Extracting the fundamental frequency of a nonlinear chirp signal with modulated harmonic structure using ML, target tracking, and the Viterbi algorithm

T. Moon, J. Gunther, G. Williams
{"title":"Extracting the fundamental frequency of a nonlinear chirp signal with modulated harmonic structure using ML, target tracking, and the Viterbi algorithm","authors":"T. Moon, J. Gunther, G. Williams","doi":"10.1109/DSP-SPE.2015.7369578","DOIUrl":null,"url":null,"abstract":"We address the problem of extracting a time-varying fundamental frequency from a signal which has multiple, possibly aliased, harmonics, observed in potentially very high noise. The approach consists of an ML detector employing compressed likelihoods, followed by one of two processing stages which filter out unreasonable detections: either a target tracking approach or a Viterbi algorithm. Results show very good ability to extract the fundamental, even in very noisy data.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"59 1","pages":"347-352"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of extracting a time-varying fundamental frequency from a signal which has multiple, possibly aliased, harmonics, observed in potentially very high noise. The approach consists of an ML detector employing compressed likelihoods, followed by one of two processing stages which filter out unreasonable detections: either a target tracking approach or a Viterbi algorithm. Results show very good ability to extract the fundamental, even in very noisy data.
利用ML、目标跟踪和Viterbi算法提取具有调制谐波结构的非线性啁啾信号的基频
我们解决了从具有多个可能混叠的谐波的信号中提取时变基频的问题,这些谐波在潜在的非常高的噪声中观察到。该方法由使用压缩似然的ML检测器组成,然后是两个处理阶段之一,过滤掉不合理的检测:目标跟踪方法或Viterbi算法。结果表明,即使在非常嘈杂的数据中,该算法也能很好地提取基波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信