MCFF: Plant leaf detection based on multi-scale CNN feature fusion

Ying Li, Zhaohong Huang, Yang Sun
{"title":"MCFF: Plant leaf detection based on multi-scale CNN feature fusion","authors":"Ying Li, Zhaohong Huang, Yang Sun","doi":"10.1109/ITME53901.2021.00058","DOIUrl":null,"url":null,"abstract":"Plant leaf detection is one of the essential aspects of the scientific plant breeding and precision agriculture process. Manual detection requires professional knowledge of the operators, high labor costs, and long time-consuming cycles. To this end, this paper proposes a multi-scale CNN feature fusion (MCFF) to detect the Rosette plant, Arabidopsis, and Tobacco. The experimental results indicate that the mean average precision of the proposed method is higher than the traditional methods such as RetinaNet, CenterNet, and Faster R-CNN.","PeriodicalId":6774,"journal":{"name":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","volume":"25 1","pages":"246-250"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITME53901.2021.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Plant leaf detection is one of the essential aspects of the scientific plant breeding and precision agriculture process. Manual detection requires professional knowledge of the operators, high labor costs, and long time-consuming cycles. To this end, this paper proposes a multi-scale CNN feature fusion (MCFF) to detect the Rosette plant, Arabidopsis, and Tobacco. The experimental results indicate that the mean average precision of the proposed method is higher than the traditional methods such as RetinaNet, CenterNet, and Faster R-CNN.
MCFF:基于多尺度CNN特征融合的植物叶片检测
植物叶片检测是植物科学育种和精准农业过程中的重要环节之一。人工检测需要操作人员具备专业知识,人工成本高,耗时长。为此,本文提出了一种多尺度CNN特征融合(MCFF)方法来检测玫瑰植物、拟南芥和烟草。实验结果表明,该方法的平均精度高于retanet、CenterNet和Faster R-CNN等传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信