Hopf Algebraic Structure of the (p,q)-Square Heizenberg White Noise Algebra

IF 0.3 Q4 MATHEMATICS
A. Riahi
{"title":"Hopf Algebraic Structure of the (p,q)-Square Heizenberg White Noise Algebra","authors":"A. Riahi","doi":"10.3844/jmssp.2022.65.70","DOIUrl":null,"url":null,"abstract":"The two-parameter quantum deformations algebras based on the Fock representation for the two parameters deformed quantum oscillator algebra obtained in (Riahi et al., 2020a) and its connection with the Meixner classes given in a series of papers (Berezansky, 1968; Berezansky and Kondratiev, 2013; Barhoumi and Riahi, 2010) which found a lot of interesting applications in quantum probability. The Hopf algebraic structure problem stated below has led, in the past 30 years, to a multiplicity of new results in different fields of mathematics and physics. The theory of multiparameter quantum deformations of Lie algebras (Hu, 1999; Riahi et al., 2021), Lie bialgebras (Song and Su, 2006; Yue and Su, 2008), and quantization of Lie algebras (Chakrabarti and Jagannathan, 1991; Song et al., 2008; Su and Yuan, 2010) play an essential role in the quantum white noise literature. More precisely, the Fock representation of two parameters deformed commutation relation was first studied by (Riahi et al., 2021) by constructing an interacting Fock space Fp,q() as the space of representation.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2022.65.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The two-parameter quantum deformations algebras based on the Fock representation for the two parameters deformed quantum oscillator algebra obtained in (Riahi et al., 2020a) and its connection with the Meixner classes given in a series of papers (Berezansky, 1968; Berezansky and Kondratiev, 2013; Barhoumi and Riahi, 2010) which found a lot of interesting applications in quantum probability. The Hopf algebraic structure problem stated below has led, in the past 30 years, to a multiplicity of new results in different fields of mathematics and physics. The theory of multiparameter quantum deformations of Lie algebras (Hu, 1999; Riahi et al., 2021), Lie bialgebras (Song and Su, 2006; Yue and Su, 2008), and quantization of Lie algebras (Chakrabarti and Jagannathan, 1991; Song et al., 2008; Su and Yuan, 2010) play an essential role in the quantum white noise literature. More precisely, the Fock representation of two parameters deformed commutation relation was first studied by (Riahi et al., 2021) by constructing an interacting Fock space Fp,q() as the space of representation.
(p,q)平方Heizenberg白噪声代数的Hopf代数结构
基于(Riahi et al., 2020a)中得到的双参数变形量子振子代数的Fock表示的双参数量子变形代数及其与一系列论文中给出的Meixner类的联系(Berezansky, 1968;别列赞斯基和康德拉季耶夫,2013;Barhoumi和Riahi, 2010),他们在量子概率中发现了许多有趣的应用。在过去的30年里,下面所述的Hopf代数结构问题在数学和物理的不同领域产生了大量的新结果。李代数的多参数量子变形理论(Hu, 1999;Riahi et al., 2021),李双代数(Song and Su, 2006;Yue和Su, 2008),李代数的量化(Chakrabarti和Jagannathan, 1991;Song et al., 2008;Su and Yuan, 2010)在量子白噪声文献中发挥了至关重要的作用。更准确地说,(Riahi et al., 2021)首先通过构造一个相互作用的Fock空间Fp,q()作为表示空间,研究了两参数变形换相关系的Fock表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信