Manifold Neighbourhoods and a Conjecture of Adjamagbo

Q4 Mathematics
D. Gauld
{"title":"Manifold Neighbourhoods and a Conjecture of Adjamagbo","authors":"D. Gauld","doi":"10.53733/131","DOIUrl":null,"url":null,"abstract":"We verify a conjecture of P. Adjamagbo that if the frontier of a relatively compact subset $V_0$ of a manifold is a submanifold then there is an increasing family $\\{V_r\\}$ of relatively compact open sets indexed by the positive reals so that the frontier of each is a submanifold, their union is the whole manifold and for each $r\\ge 0$ the subfamily indexed by $(r,\\infty)$ is a neighbourhood basis of the closure of the $r^{\\rm th}$ set. We use smooth collars in the differential category, regular neighbourhoods in the piecewise linear category and handlebodies in the topological category.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We verify a conjecture of P. Adjamagbo that if the frontier of a relatively compact subset $V_0$ of a manifold is a submanifold then there is an increasing family $\{V_r\}$ of relatively compact open sets indexed by the positive reals so that the frontier of each is a submanifold, their union is the whole manifold and for each $r\ge 0$ the subfamily indexed by $(r,\infty)$ is a neighbourhood basis of the closure of the $r^{\rm th}$ set. We use smooth collars in the differential category, regular neighbourhoods in the piecewise linear category and handlebodies in the topological category.
多元邻域与Adjamagbo的一个猜想
我们验证了P. Adjamagbo的一个猜想,即如果流形的一个相对紧子集$V_0$的边界是子流形,则存在一个由正实数索引的相对紧开集的递增族$\{V_r\}$,使得每个子集的边界都是子流形,它们的并集是整个流形,并且对于每个$r\ge 0$,以$(r,\infty)$为索引的子族是$r^{\rm th}$集闭集的邻域基。我们在微分范畴中使用平滑环,在分段线性范畴中使用正则邻域,在拓扑范畴中使用柄体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信