{"title":"Modélisation de la décharge luminescente dans un écoulement de gaz en régime turbulent","authors":"Gheorghe Vlad, Georges Le Palec, Philippe Bournot","doi":"10.1016/S0035-3159(98)80066-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we propose a model of a glow discharge in a turbulent flow. The electron density is calculated using a conservation equation. We assume that the gas glow acts on the electron density and the Shwartz model is used to model the change of diffusivity due to turbulence. In order to show the effects of the turbulence on the electron density, we use a 1D model of a stable electric discharge in to a turbulent flow. The model shows that the increase in turbulent diffusivity at high Reynolds numbers tends to flatten the electron density profiles. Theoretical results are in good agreement with the reported measures. Next, the model was applied to a 2D argon axisymmetric turbulent compressible steady flow. This study shows that when plasma oscillations and turbulence fluctuations of the neutral gas are correlated the temperature profile flattens. Finally, we study electronic distribution into a 3D plasma column in a dissymmetrical flow.</p></div>","PeriodicalId":101133,"journal":{"name":"Revue Générale de Thermique","volume":"37 6","pages":"Pages 500-513"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0035-3159(98)80066-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Générale de Thermique","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0035315998800664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we propose a model of a glow discharge in a turbulent flow. The electron density is calculated using a conservation equation. We assume that the gas glow acts on the electron density and the Shwartz model is used to model the change of diffusivity due to turbulence. In order to show the effects of the turbulence on the electron density, we use a 1D model of a stable electric discharge in to a turbulent flow. The model shows that the increase in turbulent diffusivity at high Reynolds numbers tends to flatten the electron density profiles. Theoretical results are in good agreement with the reported measures. Next, the model was applied to a 2D argon axisymmetric turbulent compressible steady flow. This study shows that when plasma oscillations and turbulence fluctuations of the neutral gas are correlated the temperature profile flattens. Finally, we study electronic distribution into a 3D plasma column in a dissymmetrical flow.