Learning Temporal-Ordered Representation for Spike Streams Based on Discrete Wavelet Transforms

Jiyuan Zhang, Shanshan Jia, Zhaofei Yu, Tiejun Huang
{"title":"Learning Temporal-Ordered Representation for Spike Streams Based on Discrete Wavelet Transforms","authors":"Jiyuan Zhang, Shanshan Jia, Zhaofei Yu, Tiejun Huang","doi":"10.1609/aaai.v37i1.25085","DOIUrl":null,"url":null,"abstract":"Spike camera, a new type of neuromorphic visual sensor that imitates the sampling mechanism of the primate fovea, can capture photons and output 40000 Hz binary spike streams. Benefiting from the asynchronous sampling mechanism, the spike camera can record fast-moving objects and clear images can be recovered from the spike stream at any specified timestamps without motion blurring. Despite these, due to the dense time sequence information of the discrete spike stream, it is not easy to directly apply the existing algorithms of traditional cameras to the spike camera. Therefore, it is necessary and interesting to explore a universally effective representation of dense spike streams to better fit various network architectures. In this paper, we propose to mine temporal-robust features of spikes in time-frequency space with wavelet transforms. We present a novel Wavelet-Guided Spike Enhancing (WGSE) paradigm consisting of three consecutive steps: multi-level wavelet transform, CNN-based learnable module, and inverse wavelet transform. With the assistance of WGSE, the new streaming representation of spikes can be learned. We demonstrate the effectiveness of WGSE on two downstream tasks, achieving state-of-the-art performance on the image reconstruction task and getting considerable performance on semantic segmentation. Furthermore, We build a new spike-based synthesized dataset for semantic segmentation. Code and Datasets are available at https://github.com/Leozhangjiyuan/WGSE-SpikeCamera.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"3 1","pages":"137-147"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i1.25085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spike camera, a new type of neuromorphic visual sensor that imitates the sampling mechanism of the primate fovea, can capture photons and output 40000 Hz binary spike streams. Benefiting from the asynchronous sampling mechanism, the spike camera can record fast-moving objects and clear images can be recovered from the spike stream at any specified timestamps without motion blurring. Despite these, due to the dense time sequence information of the discrete spike stream, it is not easy to directly apply the existing algorithms of traditional cameras to the spike camera. Therefore, it is necessary and interesting to explore a universally effective representation of dense spike streams to better fit various network architectures. In this paper, we propose to mine temporal-robust features of spikes in time-frequency space with wavelet transforms. We present a novel Wavelet-Guided Spike Enhancing (WGSE) paradigm consisting of three consecutive steps: multi-level wavelet transform, CNN-based learnable module, and inverse wavelet transform. With the assistance of WGSE, the new streaming representation of spikes can be learned. We demonstrate the effectiveness of WGSE on two downstream tasks, achieving state-of-the-art performance on the image reconstruction task and getting considerable performance on semantic segmentation. Furthermore, We build a new spike-based synthesized dataset for semantic segmentation. Code and Datasets are available at https://github.com/Leozhangjiyuan/WGSE-SpikeCamera.
基于离散小波变换的尖峰流时间有序表示学习
Spike camera是一种模仿灵长类动物中央凹采样机制的新型神经形态视觉传感器,可以捕获光子并输出40000 Hz的二进制Spike流。得益于异步采样机制,该相机可以记录快速运动的物体,并且可以在任何指定的时间戳从spike流中恢复清晰的图像,而不会产生运动模糊。尽管如此,由于离散尖峰流的时间序列信息密集,传统相机的现有算法不容易直接应用于尖峰相机。因此,探索密集尖峰流的普遍有效表示以更好地适应各种网络架构是必要和有趣的。本文提出用小波变换在时频空间中挖掘尖峰信号的时间鲁棒性特征。我们提出了一种新的小波引导尖峰增强(WGSE)范式,该范式由三个连续的步骤组成:多级小波变换、基于cnn的可学习模块和逆小波变换。在WGSE的帮助下,可以学习新的峰值流表示。我们展示了WGSE在两个下游任务上的有效性,在图像重建任务上取得了最先进的性能,在语义分割任务上取得了可观的性能。此外,我们建立了一个新的基于峰值的合成数据集用于语义分割。代码和数据集可在https://github.com/Leozhangjiyuan/WGSE-SpikeCamera上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信