Topologically induced glass transition in freely rotating rods

Sergei Obvikhov, Dmitry Kobzev, D. Perchak, M. Rubinstein
{"title":"Topologically induced glass transition in freely rotating rods","authors":"Sergei Obvikhov, Dmitry Kobzev, D. Perchak, M. Rubinstein","doi":"10.1051/JP1:1997175","DOIUrl":null,"url":null,"abstract":"We present a simple minimal model which allows numerical and analytical study of a glass transition. This is a model of rigid rods with fixed centers of rotation. The rods can rotate freely but cannot cross each other. The ratio L of the length of the rods to the distance between the centers of rotation is the only parameter of this model. With increasing L we observed a sharp crossover to practically infinite relaxation times in 2D arrays of rods. In 3D we found a real transition to a completely frozen random state at $L_{\\rm c}\\cong 4.5$.","PeriodicalId":14774,"journal":{"name":"Journal De Physique Ii","volume":"29 1","pages":"563-568"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Ii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JP1:1997175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a simple minimal model which allows numerical and analytical study of a glass transition. This is a model of rigid rods with fixed centers of rotation. The rods can rotate freely but cannot cross each other. The ratio L of the length of the rods to the distance between the centers of rotation is the only parameter of this model. With increasing L we observed a sharp crossover to practically infinite relaxation times in 2D arrays of rods. In 3D we found a real transition to a completely frozen random state at $L_{\rm c}\cong 4.5$.
自由旋转棒中拓扑诱导的玻璃化转变
我们提出了一个简单的最小模型,它允许对玻璃化转变进行数值和分析研究。这是一个具有固定旋转中心的刚性杆模型。这些杆可以自由旋转,但不能相互交叉。杆的长度与旋转中心之间的距离之比L是该模型的唯一参数。随着L的增加,我们观察到二维棒阵列中几乎无限的松弛时间的急剧交叉。在3D中,我们发现在$L_{\rm c}\cong 4.5$时,一个真正的过渡到完全冻结的随机状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信