Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries
W. Wan, L. Brouwer, S. Caspi, S. Prestemon, A. Gerbershagen, J. Schippers, D. Robin
求助PDF
{"title":"Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries","authors":"W. Wan, L. Brouwer, S. Caspi, S. Prestemon, A. Gerbershagen, J. Schippers, D. Robin","doi":"10.1103/PHYSREVSTAB.18.103501","DOIUrl":null,"url":null,"abstract":"Author(s): Wan, W; Brouwer, L; Caspi, S; Prestemon, S; Gerbershagen, A; Schippers, JM; Robin, D | Abstract: © 2015 authors. Published by the American Physical Society. We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.","PeriodicalId":20072,"journal":{"name":"Physical Review Special Topics-accelerators and Beams","volume":"2 1","pages":"103501"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Special Topics-accelerators and Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVSTAB.18.103501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
引用
批量引用
Abstract
Author(s): Wan, W; Brouwer, L; Caspi, S; Prestemon, S; Gerbershagen, A; Schippers, JM; Robin, D | Abstract: © 2015 authors. Published by the American Physical Society. We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.
交替梯度倾斜余弦θ超导磁体的未来紧凑型质子门
作者:Wan, W;这,L;卡斯皮,年代;Prestemon年代;Gerbershagen,;schipper JM;Robin, D |摘要:©2015作者。由美国物理学会出版。我们提出了一种超导磁体的设计,优化应用于质子治疗的龙门。我们引入了一种新的磁体设计概念,称为交替梯度倾斜余弦(AG-CCT)概念,它与消色差布局兼容。这种布局允许一个大的动量接受。孔径半径为15厘米,可在sc磁铁前进行铅笔束扫描。利用从AG-CCT的实际绕组结合完整的运动方程推导出的场(通过Biot-Savart定律),分析了基于这些磁体的龙门的光学和动态性能。结果表明,通过适当的高阶校正,可以在较小的光束形状畸变下快速扫描较大的三维体积。一个非常大的优点是,所有这些都可以在保持AG-CCT字段固定的情况下完成。这减少了用于深度扫描的连续光束能量之间超导磁体快速场斜坡的需要,这对于医疗应用很重要,因为这降低了与超导磁体快速场变化相关的技术风险(例如,淬火)。对于质子门架,相应的超导磁体系统有望大幅减轻重量。对于较重的离子龙门架,尺寸可能进一步显著减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB), is a peer reviewed, purely electronic journal, distributed without charge to readers and funded by contributions from national laboratories. It covers the full range of accelerator science and technology: subsystem and component technologies, beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron radiation production, spallation neutron sources, medical therapy, and intense beam applications.