Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds

IF 2 1区 数学
N. Dunfield
{"title":"Floer homology, group orderability, and taut\nfoliations of hyperbolic 3–manifolds","authors":"N. Dunfield","doi":"10.2140/gt.2020.24.2075","DOIUrl":null,"url":null,"abstract":"This paper explores the conjecture that the following are equivalent for rational homology 3-spheres: having left-orderable fundamental group, having non-minimal Heegaard Floer homology, and admitting a co-orientable taut foliation. In particular, it adds further evidence in favor of this conjecture by studying these three properties for more than 300,000 hyperbolic rational homology 3-spheres. New or much improved methods for studying each of these properties form the bulk of the paper, including a new combinatorial criterion, called a foliar orientation, for showing that a 3-manifold has a taut foliation.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"12 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.2075","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper explores the conjecture that the following are equivalent for rational homology 3-spheres: having left-orderable fundamental group, having non-minimal Heegaard Floer homology, and admitting a co-orientable taut foliation. In particular, it adds further evidence in favor of this conjecture by studying these three properties for more than 300,000 hyperbolic rational homology 3-spheres. New or much improved methods for studying each of these properties form the bulk of the paper, including a new combinatorial criterion, called a foliar orientation, for showing that a 3-manifold has a taut foliation.
双曲3 -流形的花同源性、群有序性和重叶化
本文探讨了有理同调3球具有左序基群、具有非极小Heegaard花同调和承认共取向紧叶的等价猜想。特别地,通过对30多万个双曲有理同调三球的这三个性质的研究,进一步证明了这一猜想。研究这些性质的新方法或大大改进的方法构成了论文的大部分内容,包括一个新的组合准则,称为叶面取向,用于显示3流形具有紧叶面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信