Manifold Proximal Point Algorithms for Dual Principal Component Pursuit and Orthogonal Dictionary Learning

Shixiang Chen, Zengde Deng, Shiqian Ma, A. M. So
{"title":"Manifold Proximal Point Algorithms for Dual Principal Component Pursuit and Orthogonal Dictionary Learning","authors":"Shixiang Chen, Zengde Deng, Shiqian Ma, A. M. So","doi":"10.1109/IEEECONF44664.2019.9048840","DOIUrl":null,"url":null,"abstract":"Dual principal component pursuit and orthogonal dictionary learning are two fundamental tools in data analysis, and both of them can be formulated as a manifold optimization problem with nonsmooth objective. Algorithms with convergence guarantees for solving this kind of problems have been very limited in the literature. In this paper, we propose a novel manifold proximal point algorithm for solving this nonsmooth manifold optimization problem. Numerical results are reported to demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"204 1","pages":"259-263"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Dual principal component pursuit and orthogonal dictionary learning are two fundamental tools in data analysis, and both of them can be formulated as a manifold optimization problem with nonsmooth objective. Algorithms with convergence guarantees for solving this kind of problems have been very limited in the literature. In this paper, we propose a novel manifold proximal point algorithm for solving this nonsmooth manifold optimization problem. Numerical results are reported to demonstrate the effectiveness of the proposed algorithm.
对偶主成分追踪与正交字典学习的流形近点算法
对偶主成分寻优和正交字典学习是数据分析的两个基本工具,它们都可以表述为具有非光滑目标的流形优化问题。在文献中,解决这类问题的收敛保证算法非常有限。本文提出了一种新的流形近点算法来解决这一非光滑流形优化问题。数值结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信