Pressure effects on intra- and intermolecular interactions within proteins

Boonchai B Boonyaratanakornkit, Chan Beum Park, Douglas S Clark
{"title":"Pressure effects on intra- and intermolecular interactions within proteins","authors":"Boonchai B Boonyaratanakornkit,&nbsp;Chan Beum Park,&nbsp;Douglas S Clark","doi":"10.1016/S0167-4838(01)00347-8","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of pressure on protein structure and function can vary dramatically depending on the magnitude of the pressure, the reaction mechanism (in the case of enzymes), and the overall balance of forces responsible for maintaining the protein’s structure. Interactions between the protein and solvent are also critical in determining the response of a protein to pressure. Pressure has long been recognized as a potential denaturant of proteins, often promoting the disruption of multimeric proteins, but recently examples of pressure-induced stabilization have also been reported. These global effects can be explained in terms of pressure effects on individual molecular interactions within proteins, including hydrophobic, electrostatic, and van der Waals interactions, which can now be studied in greater detail than ever before. However, many uncertainties remain, and thorough descriptions of how proteins respond to pressure remain elusive. This review summarizes basic concepts and new findings related to pressure effects on intra- and intermolecular interactions within proteins and protein complexes, and discusses their implications for protein structure–function relationships under pressure.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":"1595 1","pages":"Pages 235-249"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(01)00347-8","citationCount":"321","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483801003478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 321

Abstract

The effects of pressure on protein structure and function can vary dramatically depending on the magnitude of the pressure, the reaction mechanism (in the case of enzymes), and the overall balance of forces responsible for maintaining the protein’s structure. Interactions between the protein and solvent are also critical in determining the response of a protein to pressure. Pressure has long been recognized as a potential denaturant of proteins, often promoting the disruption of multimeric proteins, but recently examples of pressure-induced stabilization have also been reported. These global effects can be explained in terms of pressure effects on individual molecular interactions within proteins, including hydrophobic, electrostatic, and van der Waals interactions, which can now be studied in greater detail than ever before. However, many uncertainties remain, and thorough descriptions of how proteins respond to pressure remain elusive. This review summarizes basic concepts and new findings related to pressure effects on intra- and intermolecular interactions within proteins and protein complexes, and discusses their implications for protein structure–function relationships under pressure.

压力对蛋白质分子内和分子间相互作用的影响
压力对蛋白质结构和功能的影响可以根据压力的大小、反应机制(在酶的情况下)和负责维持蛋白质结构的力的总体平衡而发生巨大变化。蛋白质和溶剂之间的相互作用也是决定蛋白质对压力反应的关键。长期以来,压力一直被认为是蛋白质的潜在变性剂,通常会促进多聚体蛋白质的破坏,但最近也报道了压力诱导稳定的例子。这些全局效应可以用压力对蛋白质内部单个分子相互作用的影响来解释,包括疏水、静电和范德华相互作用,现在可以比以往任何时候都更详细地研究这些相互作用。然而,许多不确定因素仍然存在,对蛋白质如何对压力作出反应的全面描述仍然难以捉摸。本文综述了压力对蛋白质和蛋白质复合物分子内和分子间相互作用影响的基本概念和新发现,并讨论了它们对压力下蛋白质结构-功能关系的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信