Euclidean Steiner Spanners: Light and Sparse

S. Bhore, Csaba D. Tóth
{"title":"Euclidean Steiner Spanners: Light and Sparse","authors":"S. Bhore, Csaba D. Tóth","doi":"10.48550/arXiv.2206.09648","DOIUrl":null,"url":null,"abstract":"Lightness and sparsity are two natural parameters for Euclidean $(1+\\varepsilon)$-spanners. Classical results show that, when the dimension $d\\in \\mathbb{N}$ and $\\varepsilon>0$ are constant, every set $S$ of $n$ points in $d$-space admits an $(1+\\varepsilon)$-spanners with $O(n)$ edges and weight proportional to that of the Euclidean MST of $S$. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on $\\varepsilon>0$, for constant $d\\in \\mathbb{N}$, of the minimum lightness and sparsity of $(1+\\varepsilon)$-spanners, and observed that Steiner points can substantially improve the lightness and sparsity of a $(1+\\varepsilon)$-spanner. They gave upper bounds of $\\tilde{O}(\\varepsilon^{-(d+1)/2})$ for the minimum lightness in dimensions $d\\geq 3$, and $\\tilde{O}(\\varepsilon^{-(d-1)/2})$ for the minimum sparsity in $d$-space for all $d\\geq 1$. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner $(1+\\varepsilon)$-spanners. We establish lower bounds of $\\Omega(\\varepsilon^{-d/2})$ for the lightness and $\\Omega(\\varepsilon^{-(d-1)/2})$ for the sparsity of such spanners in Euclidean $d$-space for all constant $d\\geq 2$. Our lower bound constructions generalize previous constructions by Le and Solomon, but the analysis substantially simplifies previous work, using new geometric insight, focusing on the directions of edges. Next, we show that for every finite set of points in the plane and every $\\varepsilon\\in (0,1]$, there exists a Euclidean Steiner $(1+\\varepsilon)$-spanner of lightness $O(\\varepsilon^{-1})$; this matches the lower bound for $d=2$. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.09648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Lightness and sparsity are two natural parameters for Euclidean $(1+\varepsilon)$-spanners. Classical results show that, when the dimension $d\in \mathbb{N}$ and $\varepsilon>0$ are constant, every set $S$ of $n$ points in $d$-space admits an $(1+\varepsilon)$-spanners with $O(n)$ edges and weight proportional to that of the Euclidean MST of $S$. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on $\varepsilon>0$, for constant $d\in \mathbb{N}$, of the minimum lightness and sparsity of $(1+\varepsilon)$-spanners, and observed that Steiner points can substantially improve the lightness and sparsity of a $(1+\varepsilon)$-spanner. They gave upper bounds of $\tilde{O}(\varepsilon^{-(d+1)/2})$ for the minimum lightness in dimensions $d\geq 3$, and $\tilde{O}(\varepsilon^{-(d-1)/2})$ for the minimum sparsity in $d$-space for all $d\geq 1$. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner $(1+\varepsilon)$-spanners. We establish lower bounds of $\Omega(\varepsilon^{-d/2})$ for the lightness and $\Omega(\varepsilon^{-(d-1)/2})$ for the sparsity of such spanners in Euclidean $d$-space for all constant $d\geq 2$. Our lower bound constructions generalize previous constructions by Le and Solomon, but the analysis substantially simplifies previous work, using new geometric insight, focusing on the directions of edges. Next, we show that for every finite set of points in the plane and every $\varepsilon\in (0,1]$, there exists a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O(\varepsilon^{-1})$; this matches the lower bound for $d=2$. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.
欧几里得斯坦纳扳手:轻而稀疏
亮度和稀疏度是欧几里得$(1+\varepsilon)$ -扳手的两个自然参数。经典结果表明,当维数$d\in \mathbb{N}$和$\varepsilon>0$一定时,$d$ -空间中每个$n$点集$S$都有一个边为$O(n)$且权值与$S$的欧几里得MST成正比的$(1+\varepsilon)$ -扳手。在最近的一项突破中,Le和Solomon(2019)建立了$(1+\varepsilon)$ -扳手的最小轻度和稀疏度对$\varepsilon>0$的精确依赖关系,对于恒定$d\in \mathbb{N}$,并观察到斯坦纳点可以大大提高$(1+\varepsilon)$ -扳手的轻度和稀疏度。他们给出了维度$d\geq 3$的最小亮度的上界$\tilde{O}(\varepsilon^{-(d+1)/2})$,以及所有$d\geq 1$的$d$ -空间的最小稀疏度的上界$\tilde{O}(\varepsilon^{-(d-1)/2})$。在这项工作中,我们改进了欧几里得斯坦纳$(1+\varepsilon)$ -扳手的亮度和稀疏度的几个界限。对于所有常数$d\geq 2$,我们在欧几里得$d$ -空间中建立了这些扳手的亮度的下界$\Omega(\varepsilon^{-d/2})$和稀疏度的下界$\Omega(\varepsilon^{-(d-1)/2})$。我们的下界构造推广了Le和Solomon之前的构造,但分析实质上简化了之前的工作,使用新的几何洞察力,关注边缘的方向。其次,我们证明了对于平面上的每一个有限点集和每一个$\varepsilon\in (0,1]$,存在一个质量为$O(\varepsilon^{-1})$的欧几里得斯坦纳$(1+\varepsilon)$扳手;这与$d=2$的下界相匹配。我们推广了浅光树的概念,它们可能是独立的兴趣,并使用方向扳手和改进的窗口划分方案来实现严格的权重分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信